메뉴 건너뛰기




Volumn , Issue , 2009, Pages 682-689

Hyper-learning for population-based incremental learning in dynamic environments

Author keywords

[No Author keywords available]

Indexed keywords

COMPETITIVE LEARNING; DYNAMIC ENVIRONMENTS; DYNAMIC OPTIMIZATION PROBLEMS; DYNAMIC TESTS; ENVIRONMENT CHANGE; ENVIRONMENTAL DYNAMICS; EVOLUTIONARY OPTIMIZATIONS; HYPER MUTATION; KEY PARAMETERS; LEARNING RATES; LEARNING SCHEMES; PBIL ALGORITHMS; POPULATION-BASED INCREMENTAL LEARNING; SIGNIFICANT IMPACTS;

EID: 70449805707     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2009.4983011     Document Type: Conference Paper
Times cited : (26)

References (22)
  • 2
    • 33750584276 scopus 로고    scopus 로고
    • Optimum tracking with evolution strategies
    • D. V. Arnold and H.-G. Beyer. Optimum tracking with evolution strategies. Evolutionary Computation, 14(3): 291-308, 2006.
    • (2006) Evolutionary Computation , vol.14 , Issue.3 , pp. 291-308
    • Arnold, D.V.1    Beyer, H.-G.2
  • 3
    • 0003984832 scopus 로고
    • Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning
    • Carnegie Mellon University, USA
    • S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, USA, 1994.
    • (1994) Technical Report CMU-CS-94-163
    • Baluja, S.1
  • 5
    • 0344290982 scopus 로고
    • An empirical comparison of seven iterative and evolutionary function optimization heuristics
    • Carnegie Mellon University, USA
    • S. Baluja. An empirical comparison of seven iterative and evolutionary function optimization heuristics. Technical Report CMU-CS-95-193, Carnegie Mellon University, USA, 1995.
    • (1995) Technical Report CMU-CS-95-193
    • Baluja, S.1
  • 6
    • 84901453819 scopus 로고    scopus 로고
    • Memory enhanced evolutionary algorithms for changing optimization problems
    • J. Branke. Memory enhanced evolutionary algorithms for changing optimization problems. Proc. of the 1999 IEEE Congress on Evol. Comput., vol.3, pp. 1875-1882, 1999.
    • (1999) Proc. of the 1999 IEEE Congress on Evol. Comput. , vol.3 , pp. 1875-1882
    • Branke, J.1
  • 10
    • 21044438483 scopus 로고    scopus 로고
    • Evolutionary optimization in uncertain environments: A survey
    • Y. Jin and J. Branke. Evolutionary optimization in uncertain environments: a survey. IEEE Trans. on Evol. Comput., 9(3): 303-317, 2005.
    • (2005) IEEE Trans. on Evol. Comput. , vol.9 , Issue.3 , pp. 303-317
    • Jin, Y.1    Branke, J.2
  • 14
    • 0008004332 scopus 로고
    • A new diploid scheme and dominance change mechanism for non-stationary function optimisation
    • K. P. Ng and K. C. Wong. A new diploid scheme and dominance change mechanism for non-stationary function optimisation. Proc. of the 6th Int. Conf. on Genetic Algorithms, 1995.
    • (1995) Proc. of the 6th Int. Conf. on Genetic Algorithms
    • Ng, K.P.1    Wong, K.C.2
  • 15
    • 33747430130 scopus 로고    scopus 로고
    • Locating and tracking multiple dynamic optima by a particle swarm model using speciation
    • D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. on Evol. Comput., 10(4): 444-458, 2006.
    • (2006) IEEE Trans. on Evol. Comput. , vol.10 , Issue.4 , pp. 444-458
    • Parrott, D.1    Li, X.2
  • 17
    • 84901412487 scopus 로고    scopus 로고
    • Non-stationary problem optimization using the primal-dual genetic algorithm
    • S. Yang. Non-stationary problem optimization using the primal-dual genetic algorithm. Proc. of the 2003 IEEE Congress on Evol. Comput., vol.3, pp. 2246-2253, 2003.
    • (2003) Proc. of the 2003 IEEE Congress on Evol. Comput. , vol.3 , pp. 2246-2253
    • Yang, S.1
  • 18
    • 32444435566 scopus 로고    scopus 로고
    • Population-based incremental learning with memory scheme for changing environments
    • S. Yang. Population-based incremental learning with memory scheme for changing environments. Proc. of the 2005 Genetic and Evolutionary Computation Conference, vol.1, pp. 711-718, 2005.
    • (2005) Proc. of the 2005 Genetic and Evolutionary Computation Conference , vol.1 , pp. 711-718
    • Yang, S.1
  • 19
    • 53349152167 scopus 로고    scopus 로고
    • Genetic algorithms with memory- and elitism-based immigrants in dynamic environments
    • S. Yang. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments. Evolutionary Computation, 16(3): 385-416, 2008.
    • (2008) Evolutionary Computation , vol.16 , Issue.3 , pp. 385-416
    • Yang, S.1
  • 21
    • 27144484035 scopus 로고    scopus 로고
    • Experimental study on population-based incremental learning algorithms for dynamic optimization problems
    • S. Yang and X. Yao. Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing, 9(11): 815-834, 2005.
    • (2005) Soft Computing , vol.9 , Issue.11 , pp. 815-834
    • Yang, S.1    Yao, X.2
  • 22
    • 53349178106 scopus 로고    scopus 로고
    • Population-based incremental learning with associative memory for dynamic environments
    • S. Yang and X. Yao. Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. on Evol. Comput., 12(5): 542-561, 2008
    • (2008) IEEE Trans. on Evol. Comput. , vol.12 , Issue.5 , pp. 542-561
    • Yang, S.1    Yao, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.