메뉴 건너뛰기




Volumn 6, Issue 2, 2009, Pages 177-188

Noise reduction by support vector regression with a Ricker wavelet kernel

Author keywords

LS SVR; Ricker wavelet kernel; Seismic records with strong noise; SNR

Indexed keywords

DATA PROCESSING; DATA SET; LEAST SQUARES METHOD; PARAMETERIZATION; REGRESSION ANALYSIS; SEISMIC DATA; SEISMIC NOISE; SIGNAL-TO-NOISE RATIO; WAVELET ANALYSIS;

EID: 70449643100     PISSN: 17422132     EISSN: 17422140     Source Type: Journal    
DOI: 10.1088/1742-2132/6/2/009     Document Type: Article
Times cited : (7)

References (20)
  • 1
    • 24944445639 scopus 로고    scopus 로고
    • Multiple parameter selection for LS-SVM using smooth leave-one-out error
    • Bo L F, Wang L and Jiao L C 2005 Multiple parameter selection for LS-SVM using smooth leave-one-out error Proc. 2nd Int. Symp. on Neural Networks pp 851-6
    • (2005) Proc. 2nd Int. Symp. on Neural Networks , pp. 851-856
    • Bo, L.F.1    Wang, L.2    Jiao, L.C.3
  • 2
    • 48149094809 scopus 로고    scopus 로고
    • The second-generation wavelet transform and its application in denoising of seismic data
    • Cao S Y and Chen X P 2005 The second-generation wavelet transform and its application in denoising of seismic data Appl. Geophys. 2 70-4
    • (2005) Appl. Geophys. , vol.2 , Issue.2 , pp. 70-74
    • Cao, S.Y.1    Chen, X.P.2
  • 3
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O, Vapnik V N, Bousquet O and Mukherjee S 2002 Choosing multiple parameters for support vector machines Mach. Learn. 46 131-59
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.N.2    Bousquet, O.3    Mukherjee, S.4
  • 4
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V and Ma Y Q 2004 Practical selection of SVM parameters and noise estimation for SVM regression Neural Netw. 17 113-26
    • (2004) Neural Netw. , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.Q.2
  • 5
    • 0031104569 scopus 로고    scopus 로고
    • Improving the performance of f-x prediction filtering at low signal-to-noise ratios
    • Harris P E and White R E 1997 Improving the performance of f-x prediction filtering at low signal-to-noise ratios Geophys. Prospect. 45 269-302
    • (1997) Geophys. Prospect. , vol.45 , Issue.2 , pp. 269-302
    • Harris, P.E.1    White, R.E.2
  • 6
    • 38849200476 scopus 로고    scopus 로고
    • Extracting reflection with wavelet transform in vibroseis signal processing
    • Jiang Z J, Qiu X J, Lin J and Chen Z B 2006 Extracting reflection with wavelet transform in vibroseis signal processing J. Geophys. Eng. 3 236-42
    • (2006) J. Geophys. Eng. , vol.3 , Issue.3 , pp. 236-242
    • Jiang, Z.J.1    Qiu, X.J.2    Lin, J.3    Chen, Z.B.4
  • 7
    • 33745085915 scopus 로고    scopus 로고
    • Application of complex-trace analysis to seismic data for random noise suppression and temporal resolution improvement
    • Karsli H, Dondurur D and Cifci G 2006 Application of complex-trace analysis to seismic data for random noise suppression and temporal resolution improvement Geophysics 71 79-86
    • (2006) Geophysics , vol.71 , Issue.3 , pp. 79-86
    • Karsli, H.1    Dondurur, D.2    Cifci, G.3
  • 8
    • 33748869834 scopus 로고    scopus 로고
    • A 2D multistage median filter to reduce random seismic noise
    • Liu C, Liu Y, Yang B J, Wang D and Sun J G 2006 A 2D multistage median filter to reduce random seismic noise Geophysics 71 105-10
    • (2006) Geophysics , vol.71 , Issue.5 , pp. 105-110
    • Liu, C.1    Liu, Y.2    Yang, B.J.3    Wang, D.4    Sun, J.G.5
  • 9
    • 33644884701 scopus 로고    scopus 로고
    • Adaptive noise attenuation of seismic images based on singular value decomposition and texture direction detection
    • Lu W K 2006 Adaptive noise attenuation of seismic images based on singular value decomposition and texture direction detection J. Geophys. Eng. 3 28-34
    • (2006) J. Geophys. Eng. , vol.3 , Issue.1 , pp. 28-34
    • Lu, W.K.1
  • 10
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • Mattera D and Haykin S 1999 Support vector machines for dynamic reconstruction of a chaotic system Advances in Kernel Methods: Support Vector Learning ed B Schölkopf, C J C Burges and A J Smola (Cambridge, MA: MIT Press)
    • (1999) Advances in Kernel Methods: Support Vector Learning
    • Mattera, D.1    Haykin, S.2
  • 11
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J 1909 Functions of positive and negative type and their connection with the theory of integral equations Phil. Trans. R. Soc. A 209 415-46
    • (1909) Phil. Trans. R. Soc. , vol.209 , Issue.1 , pp. 415-446
    • Mercer, J.1
  • 12
    • 0141869869 scopus 로고    scopus 로고
    • A pattern search method for model selection of support vector regression
    • Momma M and Bennett K P 2002 A pattern search method for model selection of support vector regression Proc. Int. Conf. on Data Mining pp 261-74
    • (2002) Proc. Int. Conf. on Data Mining , pp. 261-274
    • Momma, M.1    Bennett, K.P.2
  • 13
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A, Schölkopf B and Müller K-R 1998 The connection between regularization operators and support vector kernels Neural Netw. 11 637-649
    • (1998) Neural Netw. , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.-R.3
  • 15
    • 13244265605 scopus 로고    scopus 로고
    • Lidar signal denoising using least-squares support vector Machine
    • Sun B Y, Huang D S and Fang H T 2005 Lidar signal denoising using least-squares support vector Machine IEEE Signal Process. Lett. 12 101-4
    • (2005) IEEE Signal Process. Lett. , vol.12 , Issue.2 , pp. 101-104
    • Sun, B.Y.1    Huang, D.S.2    Fang, H.T.3
  • 16
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J A K and Vandewalle J 1999 Least squares support vector machine classifiers Neural Process. Lett. 9 293-300
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 17
    • 24344448330 scopus 로고    scopus 로고
    • Optimum stacking of seismic records with irregular noise
    • Tyapkin Y and Ursin B 2005 Optimum stacking of seismic records with irregular noise J. Geophys. Eng. 2 177-87
    • (2005) J. Geophys. Eng. , vol.2 , Issue.3 , pp. 177-187
    • Tyapkin, Y.1    Ursin, B.2
  • 19
    • 0033165615 scopus 로고    scopus 로고
    • Random noise attenuation using forward-backward linear prediction
    • Wang Y H 1999 Random noise attenuation using forward-backward linear prediction J. Seismic Explor. 8 133-42
    • (1999) J. Seismic Explor. , vol.8 , pp. 133-142
    • Wang, Y.H.1
  • 20
    • 0037222270 scopus 로고    scopus 로고
    • Quantifying the effectiveness of stabilized inverse Q filtering
    • Wang Y H 2003 Quantifying the effectiveness of stabilized inverse Q filtering Geophysics 68 337-45
    • (2003) Geophysics , vol.68 , Issue.1 , pp. 337-345
    • Wang, Y.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.