-
1
-
-
6444243748
-
Convergence rates of convex variational regularization
-
M. Burger and S. Osher, Convergence rates of convex variational regularization, Inverse Probl. 20 (2004), pp. 1411-1421.
-
(2004)
Inverse Probl
, vol.20
, pp. 1411-1421
-
-
Burger, M.1
Osher, S.2
-
2
-
-
49749096794
-
Convergence rates for regularization of ill-posed problems in Banach spaces by approximate source conditions
-
to appear
-
T. Hein, Convergence rates for regularization of ill-posed problems in Banach spaces by approximate source conditions, Inverse Probl. 24 (2008), p. 045-007, to appear.
-
(2008)
Inverse Probl
, vol.24
, pp. 045-007
-
-
Hein, T.1
-
3
-
-
0003531188
-
-
Kluwer Academic Publishers, Dortrecht
-
H.W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dortrecht, 1996.
-
(1996)
Regularization of Inverse Problems
-
-
Engl, H.W.1
Hanke, M.2
Neubauer, A.3
-
4
-
-
23244453192
-
Regularization of ill-posed problems in Banach spaces: Convergence rates
-
E. Resmerita, Regularization of ill-posed problems in Banach spaces: Convergence rates, Inverse Probl. 21 (2005), pp. 1303-1314.
-
(2005)
Inverse Probl
, vol.21
, pp. 1303-1314
-
-
Resmerita, E.1
-
5
-
-
33744766866
-
Error estimates for non-quadratic regularization and the relation to enhancement
-
E. Resmerita and O. Scherzer, Error estimates for non-quadratic regularization and the relation to enhancement, Inverse Probl. 22 (2006), pp. 801-814.
-
(2006)
Inverse Probl
, vol.22
, pp. 801-814
-
-
Resmerita, E.1
Scherzer, O.2
-
6
-
-
34249721452
-
A convergence rates result in Banach spaces with non-smooth operators
-
B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer, A convergence rates result in Banach spaces with non-smooth operators, Inverse Probl. 23 (2007), pp. 987-1010.
-
(2007)
Inverse Probl
, vol.23
, pp. 987-1010
-
-
Hofmann, B.1
Kaltenbacher, B.2
Poschl, C.3
Scherzer, O.4
-
7
-
-
31844445760
-
Nonlinear iterative methods for linear ill-posed problems in Banach spaces
-
F. Schopfer, A.K. Louis, and T. Schuster, Nonlinear iterative methods for linear ill-posed problems in Banach spaces, Inverse Probl. 22 (2006), pp. 311-329.
-
(2006)
Inverse Probl
, vol.22
, pp. 311-329
-
-
Schopfer, F.1
Louis, A.K.2
Schuster, T.3
-
9
-
-
36149030945
-
Convergence rates for Tikhonov regularization of non-linear ill-posed problems
-
H.W. Engl, K. Kunisch, and A. Neubauer, Convergence rates for Tikhonov regularization of non-linear ill-posed problems, Inverse Probl. 5 (1989), pp. 523-540.
-
(1989)
Inverse Probl
, vol.5
, pp. 523-540
-
-
Engl, H.W.1
Kunisch, K.2
Neubauer, A.3
-
10
-
-
0000027929
-
Well posedness and convergence of some regularisation methods for non-linear ill-posed problems
-
T.I. Seidman and C.R. Vogel, Well posedness and convergence of some regularisation methods for non-linear ill-posed problems, Inverse Probl. 5 (1989), pp. 227-238.
-
(1989)
Inverse Probl
, vol.5
, pp. 227-238
-
-
Seidman, T.I.1
Vogel, C.R.2
-
11
-
-
0003603616
-
-
Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dortrecht
-
I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dortrecht, 1990.
-
(1990)
Geometry of Banach Spaces
-
-
Cioranescu, I.1
-
12
-
-
50749132985
-
Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces
-
Z-B. Xu and G.F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl 157 (1991), pp. 189-210.
-
(1991)
J. Math. Anal. Appl
, vol.157
, pp. 189-210
-
-
Xu, Z.-B.1
Roach, G.F.2
-
13
-
-
0000012624
-
A problem of adaptive estimation in Gaussian white noise
-
O.V. Lepskij, A problem of adaptive estimation in Gaussian white noise, Teor. Veroyatn. Primen 35 (1990), pp. 459-470.
-
(1990)
Teor. Veroyatn. Primen
, vol.35
, pp. 459-470
-
-
Lepskij, O.V.1
-
14
-
-
33744504745
-
The Lepskij principle revisited
-
P. Mathe, The Lepskij principle revisited, Inverse Probl. 22 (2006), pp. L11-L15.
-
(2006)
Inverse Probl
, vol.22
-
-
Mathe, P.1
-
15
-
-
28544447290
-
A Lepskij-type stopping rule for regularized Newton methods
-
F. Bauer and T. Hohage, A Lepskij-type stopping rule for regularized Newton methods, Inverse Probl. 21 (2005), pp. 1979-1991.
-
(2005)
Inverse Probl
, vol.21
, pp. 1979-1991
-
-
Bauer, F.1
Hohage, T.2
|