-
2
-
-
4344628214
-
-
10.1073/pnas.0400672101
-
A. A. Moreira, A. Mathur, D. Diermeier, and L. A. N. Amaral, Proc. Natl. Acad. Sci. U.S.A. 101, 12085 (2004). 10.1073/pnas.0400672101
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 12085
-
-
Moreira, A.A.1
Mathur, A.2
Diermeier, D.3
Amaral, L.A.N.4
-
5
-
-
0014489272
-
-
10.1016/0022-5193(69)90015-0
-
S. A. Kauffman, J. Theor. Biol. 22, 437 (1969). 10.1016/0022-5193(69) 90015-0
-
(1969)
J. Theor. Biol.
, vol.22
, pp. 437
-
-
Kauffman, S.A.1
-
6
-
-
58249140907
-
-
edited by H. G. Schuster (Wiley, New York
-
B. Drossel, in Reviews of Nonlinear Dynamics and Complexity, edited by, H. G. Schuster, (Wiley, New York, 2008), Vol. 1.
-
(2008)
Reviews of Nonlinear Dynamics and Complexity
, vol.1
-
-
Drossel, B.1
-
7
-
-
27144548324
-
-
10.1103/PhysRevLett.95.048701
-
F. Greil and B. Drossel, Phys. Rev. Lett. 95, 048701 (2005). 10.1103/PhysRevLett.95.048701
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 048701
-
-
Greil, F.1
Drossel, B.2
-
8
-
-
28844465824
-
-
10.1103/PhysRevE.72.055101
-
K. Klemm and S. Bornholdt, Phys. Rev. E 72, 055101 (R) (2005). 10.1103/PhysRevE.72.055101
-
(2005)
Phys. Rev. e
, vol.72
, pp. 055101
-
-
Klemm, K.1
Bornholdt, S.2
-
9
-
-
1842687878
-
-
10.1073/pnas.0305937101
-
F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004). 10.1073/pnas.0305937101
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 4781
-
-
Li, F.1
Long, T.2
Lu, Y.3
Ouyang, Q.4
Tang, C.5
-
10
-
-
67349104185
-
-
10.1016/j.biosystems.2009.03.006
-
J. Aracena, E. Goles, A. Moreira, and L. Salinas, BioSystems 97, 1 (2009). 10.1016/j.biosystems.2009.03.006
-
(2009)
BioSystems
, vol.97
, pp. 1
-
-
Aracena, J.1
Goles, E.2
Moreira, A.3
Salinas, L.4
-
12
-
-
0038718854
-
-
10.1137/S003614450342480
-
M. E. J. Newman, SIAM Rev. 45, 167 (2003). 10.1137/S003614450342480
-
(2003)
SIAM Rev.
, vol.45
, pp. 167
-
-
Newman, M.E.J.1
-
15
-
-
1542287343
-
-
10.1126/science.1089167
-
R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, Science 303, 1538 (2004). 10.1126/science.1089167
-
(2004)
Science
, vol.303
, pp. 1538
-
-
Milo, R.1
Itzkovitz, S.2
Kashtan, N.3
Levitt, R.4
Shen-Orr, S.5
Ayzenshtat, I.6
Sheffer, M.7
Alon, U.8
-
16
-
-
53149126994
-
-
edited by L. S. Yaeger, M. A. Bedau, D. Floreano, R. L. Goldstone, and A. Vespignani (MIT Press, Cambridge, MA
-
C. Gershenson, S. A. Kauffman, and I. Shmulevich, in Artificial Life X, Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems, edited by, L. S. Yaeger, M. A. Bedau, D. Floreano, R. L. Goldstone and, A. Vespignani, (MIT Press, Cambridge, MA, 2006), pp. 35-42.
-
(2006)
Artificial Life X, Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems
, pp. 35-42
-
-
Gershenson, C.1
Kauffman, S.A.2
Shmulevich, I.3
-
17
-
-
0003657590
-
-
Fascicle 3: Generating All Combinations and Partitions Vol. Addison-Wesley, Reading, MA
-
D. E. Knuth, The Art of Computer Programming, Fascicle 3: Generating All Combinations and Partitions Vol. 4 (Addison-Wesley, Reading, MA, 2005).
-
(2005)
The Art of Computer Programming
, vol.4
-
-
Knuth, D.E.1
-
18
-
-
70449694600
-
-
Unlike in some types of graphs, those trajectories are always possible on hypercubes and are known as Grey codes in computer science.
-
Unlike in some types of graphs, those trajectories are always possible on hypercubes and are known as Grey codes in computer science.
-
-
-
-
19
-
-
70449647310
-
-
We note that an alternative procedure that starts with an input set that contains all nodes and then randomly removes inputs, until a removal is no longer possible, is for larger k much faster than the procedure used by us. However, it will in general not produce a minimal network. As an example, consider the case where only one minimal set of k inputs is possible for a given node. In this case, if one of these inputs is removed early in the iteration, the input set obtained at the end will have a size larger than the minimal k.
-
We note that an alternative procedure that starts with an input set that contains all nodes and then randomly removes inputs, until a removal is no longer possible, is for larger k much faster than the procedure used by us. However, it will in general not produce a minimal network. As an example, consider the case where only one minimal set of k inputs is possible for a given node. In this case, if one of these inputs is removed early in the iteration, the input set obtained at the end will have a size larger than the minimal k.
-
-
-
|