메뉴 건너뛰기




Volumn , Issue , 2009, Pages 486-489

A novel approach to musical genre classification using probabilistic latent semantic analysis model

Author keywords

MFCC; Musical genre classification; pLSA

Indexed keywords

EM ALGORITHMS; ITERATIVE LEARNING; MFCC; MUSIC SIGNALS; MUSICAL GENRE; MUSICAL GENRE CLASSIFICATION; NATURAL CLUSTERS; PLSA; PLSA MODEL; PROBABILISTIC LATENT SEMANTIC ANALYSIS MODEL; TEMPORAL SEGMENTS; TRAINING PROCEDURES; UNSUPERVISED CLUSTERING ALGORITHM;

EID: 70449585624     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICME.2009.5202540     Document Type: Conference Paper
Times cited : (18)

References (16)
  • 1
    • 0036648502 scopus 로고    scopus 로고
    • Musical genre classification of audio signals
    • May
    • G. Tzanetakis and P. Cook, "Musical genre classification of audio signals," IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293-302, May 2002.
    • (2002) IEEE Trans. Speech Audio Process , vol.10 , Issue.5 , pp. 293-302
    • Tzanetakis, G.1    Cook, P.2
  • 3
    • 37249002308 scopus 로고    scopus 로고
    • Content-based Information Fusion for Semi-Supervised Music Genre Classification
    • January
    • Y. Song and C. Zhang, "Content-based Information Fusion for Semi-Supervised Music Genre Classification," IEEE Trans. Multimedia, vol. 10, no. 1, pp. 145-152, January 2008.
    • (2008) IEEE Trans. Multimedia , vol.10 , Issue.1 , pp. 145-152
    • Song, Y.1    Zhang, C.2
  • 4
    • 33646739998 scopus 로고    scopus 로고
    • Toward intelligent music information retrieval
    • June
    • T. Li and M. Ogihara, "Toward intelligent music information retrieval," IEEE Trans. Multimedia, vol. 8, no. 3, pp. 564-574, June 2006.
    • (2006) IEEE Trans. Multimedia , vol.8 , Issue.3 , pp. 564-574
    • Li, T.1    Ogihara, M.2
  • 5
    • 39649092019 scopus 로고    scopus 로고
    • Musical genre classification using nonnegative matrix factorization-based features
    • February
    • A. Holzapfel and Y. Stylianou, "Musical genre classification using nonnegative matrix factorization-based features," IEEE Trans. Speech Aud. Process., vol. 16, no. 2, pp. 424-434, February 2008.
    • (2008) IEEE Trans. Speech Aud. Process , vol.16 , Issue.2 , pp. 424-434
    • Holzapfel, A.1    Stylianou, Y.2
  • 6
    • 33751531805 scopus 로고    scopus 로고
    • Aggregate features and adaboost for music classification
    • June
    • J. Bergstra, N. Casagrande, D. Erhan, D. Eck and B. Kegl, "Aggregate features and adaboost for music classification," Mach. Learn., vol. 65, no. 2-3, pp. 473-484, June 2006.
    • (2006) Mach. Learn , vol.65 , Issue.2-3 , pp. 473-484
    • Bergstra, J.1    Casagrande, N.2    Erhan, D.3    Eck, D.4    Kegl, B.5
  • 7
    • 17044405097 scopus 로고    scopus 로고
    • Fast recognition of musical genres using rbf networks
    • April
    • D. Turnbull and C. Elkan, "Fast recognition of musical genres using rbf networks," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 580-584, April 2005.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.4 , pp. 580-584
    • Turnbull, D.1    Elkan, C.2
  • 8
    • 18744375187 scopus 로고    scopus 로고
    • Automatic music classification and summarization
    • May
    • C. Xu, N. C. Maddage and X. Shao, "Automatic music classification and summarization," IEEE Trans. Speech Aud. Process., vol. 13, no. 3, pp. 441-450, May 2005.
    • (2005) IEEE Trans. Speech Aud. Process , vol.13 , Issue.3 , pp. 441-450
    • Xu, C.1    Maddage, N.C.2    Shao, X.3
  • 9
    • 0034818212 scopus 로고    scopus 로고
    • Unsupervised Learning by Probabilistic Latent Semantic Analysis
    • February
    • T. Hofmann, "Unsupervised Learning by Probabilistic Latent Semantic Analysis," Machine Learning, vol. 42, no. 2, pp. 177-196, February 2001.
    • (2001) Machine Learning , vol.42 , Issue.2 , pp. 177-196
    • Hofmann, T.1
  • 10
  • 11
    • 45049084813 scopus 로고    scopus 로고
    • Unsupervised learning of human action categories using spatial-temporal words
    • September
    • J. C. Niebles, H. Wang and F. Li, "Unsupervised learning of human action categories using spatial-temporal words," Int. J. Computer Vision., vol. 79, no. 3, pp. 299-318, September 2008.
    • (2008) Int. J. Computer Vision , vol.79 , Issue.3 , pp. 299-318
    • Niebles, J.C.1    Wang, H.2    Li, F.3
  • 14
    • 70449613682 scopus 로고    scopus 로고
    • ISMIR Audio Description Contest, online, Available
    • ISMIR Audio Description Contest, 2004 [online]. Available: http://ismir2004.ismir.net/genre-contest/index.htm
    • (2004)
  • 15
    • 84873580369 scopus 로고    scopus 로고
    • A closer look on artist filters for musical genre classification
    • Vienna, Austria
    • A. Flexer, "A closer look on artist filters for musical genre classification," in Proc. Int. Conf. Music Information Retrieval (ISMIR), Vienna, Austria, 2007.
    • (2007) Proc. Int. Conf. Music Information Retrieval (ISMIR)
    • Flexer, A.1
  • 16
    • 85032752479 scopus 로고    scopus 로고
    • Automatic genre classification of music content: A survey
    • N. Scaringella, G. Zoia, and D. Mlynek, "Automatic genre classification of music content: a survey", IEEE Signal Processing Magazine, vol. 23, no. 2, pp. 133-141, 2006.
    • (2006) IEEE Signal Processing Magazine , vol.23 , Issue.2 , pp. 133-141
    • Scaringella, N.1    Zoia, G.2    Mlynek, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.