메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2841-2845

Automatic recognition of epileptic seizure in EEG via support vector machine and dimension fractal

Author keywords

[No Author keywords available]

Indexed keywords

ANALYSIS METHOD; AUTOMATIC RECOGNITION; CLASSIFICATION METHODS; EEG SIGNALS; EEG SIGNALS CLASSIFICATION; ELECTRICAL ACTIVITIES; ELECTROENCEPHALOGRAM SIGNALS; EPILEPTIC SEIZURES; FEATURES VECTOR; GEOMETRICAL COMPLEXITY; HEALTHY SUBJECTS; MACHINE LEARNING TECHNIQUES; NEUROLOGICAL DISORDERS; NEURONAL DYNAMICS; NONLINEAR DYNAMICS THEORY; PHYSIOLOGIC FUNCTION; SPECIFIC STATE; STATISTICAL LEARNING THEORY; TRANSIENT DETECTION; WAVE FORMS;

EID: 70449567662     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2009.5179059     Document Type: Conference Paper
Times cited : (19)

References (25)
  • 1
    • 0033990625 scopus 로고    scopus 로고
    • Recurrent neural network based prediction of epileptic seizures in intraand extracranial EEG
    • A. Petrosian, D. Prokhorov, R. Homan, R. Dashei, and D. Wunsch, "Recurrent neural network based prediction of epileptic seizures in intraand extracranial EEG, " Neurocomputing, vol. 30, pp. 201-218, 2000.
    • (2000) Neurocomputing , vol.30 , pp. 201-218
    • Petrosian, A.1    Prokhorov, D.2    Homan, R.3    Dashei, R.4    Wunsch, D.5
  • 2
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model, " Expert Systems with Applications, vol. 32, pp. 1084-1093, 2007.
    • (2007) Expert Systems with Applications , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 4
    • 70449586404 scopus 로고    scopus 로고
    • C. A. M. Lima, W. J. P. Villanueva, E. P. dos Santos, and F. J. Von Zuben, A multistage ensemble of support vector machine variants in 2004 Procs. of the 5th International Conference on Recent Advances in Soft Computing, pp. 670-675.
    • C. A. M. Lima, W. J. P. Villanueva, E. P. dos Santos, and F. J. Von Zuben, "A multistage ensemble of support vector machine variants" in 2004 Procs. of the 5th International Conference on Recent Advances in Soft Computing, pp. 670-675.
  • 5
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • E. D. Übeyli, "Wavelet/mixture of experts network structure for EEG signals classification, " Expert Systems with Applications, vol. 34, pp. 1954-1962, 2008.
    • (2008) Expert Systems with Applications , vol.34 , pp. 1954-1962
    • Übeyli, E.D.1
  • 6
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou, and N. Dadmehr. "Analysis of EEG records in an epileptic patient using wavelet transform, " J Neurosci Methods, vol. 123, no. 1, pp. 69-87, 2003.
    • (2003) J Neurosci Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 7
    • 28844479643 scopus 로고    scopus 로고
    • A modified mixture of experts network structure for ECG beats classification with diverse features
    • I. Güler, and E. D. Übeyli, "A modified mixture of experts network structure for ECG beats classification with diverse features, " Engineering Applications of Artificial Intelligence, vol. 18, pp. 845-856, 2005.
    • (2005) Engineering Applications of Artificial Intelligence , vol.18 , pp. 845-856
    • Güler, I.1    Übeyli, E.D.2
  • 9
    • 0034796777 scopus 로고    scopus 로고
    • AR spectral analysis of EEG signals by using maximum likelihood estimation
    • I. Guler, M. K. Kiymik, M. Akin, and A. Alkan, "AR spectral analysis of EEG signals by using maximum likelihood estimation, " Computers in Biology and Medicine, vol. 31, pp. 441-450, 2001.
    • (2001) Computers in Biology and Medicine , vol.31 , pp. 441-450
    • Guler, I.1    Kiymik, M.K.2    Akin, M.3    Alkan, A.4
  • 10
    • 0033322387 scopus 로고    scopus 로고
    • Efficient training of RBF networks for classification
    • I. T. Nabney, Efficient training of RBF networks for classification, in 1999 Proc. 9th ICANN, vol. 1, pp. 210-215.
    • 1999 Proc. 9th ICANN , vol.1 , pp. 210-215
    • Nabney, I.T.1
  • 14
    • 0023819518 scopus 로고
    • Fractals and the analysis of waveforms
    • M. Katz, "Fractals and the analysis of waveforms, " Comput. Biol. M ed., vol. 18, no. 3, pp. 145-156, 1988.
    • (1988) Comput. Biol. M ed , vol.18 , Issue.3 , pp. 145-156
    • Katz, M.1
  • 16
    • 0030219951 scopus 로고    scopus 로고
    • Detection of seizure activity in EEG by an artificial neural network: A preliminary study
    • N. Pradhan, P. K. Sadasivan, and G. R. Arunodaya, "Detection of seizure activity in EEG by an artificial neural network: A preliminary study, " Computers and Biomedical Research, vol. 29, pp. 303-313, 1996.
    • (1996) Computers and Biomedical Research , vol.29 , pp. 303-313
    • Pradhan, N.1    Sadasivan, P.K.2    Arunodaya, G.R.3
  • 17
    • 33646981873 scopus 로고
    • Characterization of strange attractors
    • P. Grassberger, and I. Proccacia, "Characterization of strange attractors, " Physical Review Leflers, vol. 50, no. 5, pp. 346-349, 1983.
    • (1983) Physical Review Leflers , vol.50 , Issue.5 , pp. 346-349
    • Grassberger, P.1    Proccacia, I.2
  • 19
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. "Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, " Phys. Rev. E, vol. 64, pp. 061907, 2001.
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5
  • 20
    • 34250886271 scopus 로고    scopus 로고
    • Atrial fibrillation classification with artificial neural networks
    • S. Kara, and M. Okandan, "Atrial fibrillation classification with artificial neural networks, " Pattern Recognition, vol. 40, pp. 2967-2973, 2007.
    • (2007) Pattern Recognition , vol.40 , pp. 2967-2973
    • Kara, S.1    Okandan, M.2
  • 21
    • 45549113571 scopus 로고
    • Approach to an irregular time series on the basis of th fractal theory
    • T. Higuchi, "Approach to an irregular time series on the basis of th fractal theory, " Physica D, vol. 3, no. 1, pp. 277-283, 1988.
    • (1988) Physica D , vol.3 , Issue.1 , pp. 277-283
    • Higuchi, T.1
  • 22
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • V. Cherkassky, and Y. Ma, "Practical selection of SVM parameters and noise estimation for SVM regression", Neural Networks, vol. 17, pp. 113-126, 2004.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 25
    • 0030273681 scopus 로고    scopus 로고
    • An adaptive structure neural network with application to EEG automatic seizure detection
    • W. Weng, and K. Khorasani, "An adaptive structure neural network with application to EEG automatic seizure detection, " Neural Networks, vol. 9, pp. 1223-1240, 1996.
    • (1996) Neural Networks , vol.9 , pp. 1223-1240
    • Weng, W.1    Khorasani, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.