메뉴 건너뛰기




Volumn 291, Issue 3, 2009, Pages 763-798

Normal forms for semilinear quantum harmonic oscillators;Formes normales de Birkhoff pour l'oscillateur harmonique quantique non linéaire

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70449532486     PISSN: 00103616     EISSN: 14320916     Source Type: Journal    
DOI: 10.1007/s00220-009-0800-x     Document Type: Article
Times cited : (60)

References (23)
  • 1
    • 0037346777 scopus 로고    scopus 로고
    • Birkhoff normal form for some nonlinear PDEs
    • Bambusi D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Physics 234, 253-283 (2003).
    • (2003) Commun. Math. Physics , vol.234 , pp. 253-283
    • Bambusi, D.1
  • 2
    • 77949349971 scopus 로고    scopus 로고
    • A birkhoff normal form theorem for some semilinear pdes
    • Berlin-Heidelberg-New York: Springer
    • Bambusi, D.: A birkhoff normal form theorem for some semilinear pdes. In: Hamiltonian Dynamical Systems and Applications, Berlin-Heidelberg-New York: Springer, 2007, pp. 213-247.
    • (2007) Hamiltonian Dynamical Systems and Applications
    • Bambusi, D.1
  • 3
    • 34948812627 scopus 로고    scopus 로고
    • Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds
    • Bambusi D., Delort J.-M., Grébert B., Szeftel J.: Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math. 60(11), 1665-1690 (2007).
    • (2007) Comm. Pure Appl. Math , vol.60 , Issue.11 , pp. 1665-1690
    • Bambusi, D.1    Delort, J.-M.2    Grébert, B.3    Szeftel, J.4
  • 4
    • 33845768482 scopus 로고    scopus 로고
    • Birkhoff normal form for PDEs with tame modulus
    • Bambusi D., Grébert B.: Birkhoff normal form for PDEs with tame modulus. Duke Math. J. 135, 507-567 (2006).
    • (2006) Duke Math. J , vol.135 , pp. 507-567
    • Bambusi, D.1    Grébert, B.2
  • 5
    • 17944387090 scopus 로고    scopus 로고
    • Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations
    • Bourgain J.: Construction of approximative and almost-periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Func. Anal. 6, 201-230 (1996).
    • (1996) Geom. Func. Anal , vol.6 , pp. 201-230
    • Bourgain, J.1
  • 7
    • 0036025581 scopus 로고    scopus 로고
    • Remarks on nonlinear Schrödinger equations with harmonic potential
    • Carles R.: Remarks on nonlinear Schrödinger equations with harmonic potential. Ann. Henri Poincaré 3(4), 757-772 (2002).
    • (2002) Ann. Henri Poincaré , vol.3 , Issue.4 , pp. 757-772
    • Carles, R.1
  • 9
    • 3042772564 scopus 로고    scopus 로고
    • Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres
    • Delort J.M., Szeftel J.: Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres. Internat. Math. Res. Notices 37, 1897-1966 (2004).
    • (2004) Internat. Math. Res. Notices , vol.37 , pp. 1897-1966
    • Delort, J.M.1    Szeftel, J.2
  • 10
    • 70449535715 scopus 로고    scopus 로고
    • Birkhoff normal form and Hamiltonian PDEs
    • Sémin. Congr., Paris: Soc. Math. France
    • Grébert, B.: Birkhoff normal form and Hamiltonian PDEs. In: Partial Differential Equations and Applications, Sémin. Congr., Vol. 15, Paris: Soc. Math. France, 2007, pp. 1-46.
    • (2007) Partial Differential Equations and Applications , pp. 1-46
    • Grébert, B.1
  • 12
    • 81155127623 scopus 로고    scopus 로고
    • Berlin-Heidelberg-New York: Springer
    • Kappeler T., Pöschel J.: KAM & KdV. Springer, Berlin-Heidelberg-New York (2003).
    • (2003) KAM & KdV
    • Kappeler, T.1    Pöschel, J.2
  • 13
    • 22544476815 scopus 로고    scopus 로고
    • p eigenfunction bounds for the Hermite operator
    • p eigenfunction bounds for the Hermite operator. Duke Math. J. 128(2), 369-392 (2005).
    • (2005) Duke Math. J , vol.128 , Issue.2 , pp. 369-392
    • Koch, H.1    Tataru, D.2
  • 14
    • 51249177748 scopus 로고
    • Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum
    • Kuksin S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21, 192-205 (1987).
    • (1987) Funct. Anal. Appl , vol.21 , pp. 192-205
    • Kuksin, S.B.1
  • 17
    • 0037930223 scopus 로고    scopus 로고
    • International Series of Monographs on Physics, Oxford: The Clarendon Press/Oxford University Press
    • Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. International Series of Monographs on Physics, Vol. 116, Oxford: The Clarendon Press/Oxford University Press, 2003.
    • (2003) Bose-Einstein Condensation , vol.116
    • Pitaevskii, L.1    Stringari, S.2
  • 19
    • 70449523193 scopus 로고
    • Providence, RI: Amer. Math. Soc
    • Szego, G.: Orthogonal Polynomials. Fourth ed. American Mathematical Society, Colloquium Publications, Vol. XXIII, Providence, RI: Amer. Math. Soc., 1975.
    • (1975) Orthogonal Polynomials , vol.XXIII
    • Szego, G.1
  • 21
    • 36448997422 scopus 로고    scopus 로고
    • Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations
    • Wang W.-M.: Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations. Commun. Math. Physics 277, 459-496 (2008).
    • (2008) Commun. Math. Physics , vol.277 , pp. 459-496
    • Wang, W.-M.1
  • 22
    • 3543151381 scopus 로고    scopus 로고
    • Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity
    • Yajima K., Zhang G.: Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity. J. Diff. Eqs. 202(1), 81-110 (2004).
    • (2004) J. Diff. Eqs , vol.202 , Issue.1 , pp. 81-110
    • Yajima, K.1    Zhang, G.2
  • 23
    • 27944469641 scopus 로고    scopus 로고
    • Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential
    • Zhang J.: Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential. Comm. Part. Diff. Eqs. 30(10-12), 1429-1443 (2005).
    • (2005) Comm. Part. Diff. Eqs , vol.30 , Issue.10-12 , pp. 1429-1443
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.