메뉴 건너뛰기




Volumn 37, Issue 3, 2010, Pages 1911-1919

Find multi-objective paths in stochastic networks via chaotic immune PSO

Author keywords

Artificial immune system; Chaos operator; Genetic algorithm; Particle swarm optimization; Shortest path; Stochastic network

Indexed keywords

ARTIFICIAL IMMUNE SYSTEM; CHAOS OPERATOR; CONVERGENCE TIME; FUNDAMENTAL RESEARCH; IMMUNE PSO; INTELLIGENT TRANSPORTATION SYSTEMS; MULTI OBJECTIVE; NOVEL METHODS; NUMERICAL EXPERIMENTS; OPTIMALITY; PATH FINDING; PRAGMATIC MODEL; SHORTEST PATH; STOCHASTIC NETWORK; STOCHASTIC NETWORKS; TRANSPORTATION PLANNING;

EID: 70449520180     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.07.025     Document Type: Article
Times cited : (84)

References (26)
  • 1
    • 44449084253 scopus 로고    scopus 로고
    • Linear phase FIR filter design using particle swarm optimization and genetic algorithms
    • Ababneh J.I., and Bataineh M.H. Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digital Signal Processing 18 (2008) 657-668
    • (2008) Digital Signal Processing , vol.18 , pp. 657-668
    • Ababneh, J.I.1    Bataineh, M.H.2
  • 2
    • 0029333456 scopus 로고    scopus 로고
    • Investigating effect of travel time variability on route choice using repeated measurement stated preference data
    • Abdel-Aty M., Kitamura R., and Jovanis P. Investigating effect of travel time variability on route choice using repeated measurement stated preference data. Transportation Research Record 1493 (1996) 39-45
    • (1996) Transportation Research Record , Issue.1493 , pp. 39-45
    • Abdel-Aty, M.1    Kitamura, R.2    Jovanis, P.3
  • 3
    • 0036950712 scopus 로고    scopus 로고
    • A genetic algorithm for shortest path routing problem and the sizing of populations
    • Ahn C.W., and Ramakrishna R.S. A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Transactions on Evolutionary Computation 6 6 (2002) 566-579
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.6 , pp. 566-579
    • Ahn, C.W.1    Ramakrishna, R.S.2
  • 5
    • 0004125427 scopus 로고    scopus 로고
    • Artificial immune systems: Part 1-Basic theory and applications
    • Technical Report, TR-DCA 01/99
    • De Castro, L. N., & Von Zuben, F. J. (1999). Artificial immune systems: Part 1-Basic theory and applications. Technical Report, TR-DCA 01/99.
    • (1999)
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 6
    • 3142679953 scopus 로고    scopus 로고
    • Artificial immune systems as a novel soft computing paradigm
    • De Castro L.N., and Timmis J.I. Artificial immune systems as a novel soft computing paradigm. Soft Computing Journal (2003) 7
    • (2003) Soft Computing Journal , pp. 7
    • De Castro, L.N.1    Timmis, J.I.2
  • 7
    • 0037856497 scopus 로고    scopus 로고
    • The clonal selection algorithm with engineering applications
    • De Castro L.N., and Von Zuben F.J. The clonal selection algorithm with engineering applications. GECCO (2000) 36-37
    • (2000) GECCO , pp. 36-37
    • De Castro, L.N.1    Von Zuben, F.J.2
  • 9
    • 0001929693 scopus 로고    scopus 로고
    • Cytokines in acute and chronic inflammation
    • Feghali C.A., and Wright T.M. Cytokines in acute and chronic inflammation. Front Bioscience 2 (1997) 12-26
    • (1997) Front Bioscience , vol.2 , pp. 12-26
    • Feghali, C.A.1    Wright, T.M.2
  • 11
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • Hong W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Conversion and Management 50 (2009) 105-117
    • (2009) Energy Conversion and Management , vol.50 , pp. 105-117
    • Hong, W.C.1
  • 12
    • 4344562758 scopus 로고    scopus 로고
    • Finding multi-objective paths in stochastic networks: A simulation-based genetic algorithm approach
    • Ji, Z., Chen, A., & Subprasom, K. (2004). Finding multi-objective paths in stochastic networks: A simulation-based genetic algorithm approach. In Proceedings of IEEE congress on evolutionary computation (Vol. 1, pp. 174-180).
    • (2004) Proceedings of IEEE congress on evolutionary computation , vol.1 , pp. 174-180
    • Ji, Z.1    Chen, A.2    Subprasom, K.3
  • 18
    • 0032358743 scopus 로고    scopus 로고
    • Least possible time paths in stochastic, time-varying networks
    • Miller-Hooks E., and Mahmassani H. Least possible time paths in stochastic, time-varying networks. Computers and Operations Research 25 (1998) 1107-1125
    • (1998) Computers and Operations Research , Issue.25 , pp. 1107-1125
    • Miller-Hooks, E.1    Mahmassani, H.2
  • 19
    • 50149086082 scopus 로고    scopus 로고
    • Solving shortest path problem using particle swarm optimization
    • Mohemmed A.W., et al. Solving shortest path problem using particle swarm optimization. Applied Soft Computing 8 4 (2008) 1643-1653
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1643-1653
    • Mohemmed, A.W.1
  • 20
    • 50149086082 scopus 로고    scopus 로고
    • Solving shortest path problem using particle swarm optimization
    • 10.1016/j.asoc.2008.01.00
    • Mohemmed A.W., Sahoo N.C., and Geok T.K. Solving shortest path problem using particle swarm optimization. Applied Soft Computing (2008) 10.1016/j.asoc.2008.01.00
    • (2008) Applied Soft Computing
    • Mohemmed, A.W.1    Sahoo, N.C.2    Geok, T.K.3
  • 21
    • 58049149234 scopus 로고    scopus 로고
    • A new approach to solve flowshop scheduling problems by artificial immune systems
    • Orhan E., Alper, and Doyen. A new approach to solve flowshop scheduling problems by artificial immune systems. Dogus Universitesi Dergisi 8 1 (2007) 12-27
    • (2007) Dogus Universitesi Dergisi , vol.8 , Issue.1 , pp. 12-27
    • Orhan, E.1    Alper2    Doyen3
  • 22
    • 54449087873 scopus 로고    scopus 로고
    • A comparison of solution strategies for bio-objective shortest path problems
    • Raith A., and Ehrgott M. A comparison of solution strategies for bio-objective shortest path problems. Computers & Operations Research. 36 4 (2009) 1299-1331
    • (2009) Computers & Operations Research. , vol.36 , Issue.4 , pp. 1299-1331
    • Raith, A.1    Ehrgott, M.2
  • 23
    • 0037475094 scopus 로고    scopus 로고
    • The particle swarm optimization algorithm: Convergence analysis and parameter selection
    • Trelea I.C. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters 85 6 (2008) 317-325
    • (2008) Information Processing Letters , vol.85 , Issue.6 , pp. 317-325
    • Trelea, I.C.1
  • 24
    • 54449088017 scopus 로고    scopus 로고
    • An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position
    • Xi M.L., Sun J., and Xu W.B. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Applied Mathematics and Computation 205 2 (2008) 751-759
    • (2008) Applied Mathematics and Computation , vol.205 , Issue.2 , pp. 751-759
    • Xi, M.L.1    Sun, J.2    Xu, W.B.3
  • 25
    • 52949137007 scopus 로고    scopus 로고
    • Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm
    • Zhang W., and Liu Y.T. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm. International Journal of Electrical Power & Energy Systems 30 9 (2008) 525-532
    • (2008) International Journal of Electrical Power & Energy Systems , vol.30 , Issue.9 , pp. 525-532
    • Zhang, W.1    Liu, Y.T.2
  • 26
    • 52049124538 scopus 로고    scopus 로고
    • An improved particle swarm optimization algorithm for flowshop scheduling problem
    • Zhang C.S., Sun J.G., Zhu X.J., and Yang Q.Y. An improved particle swarm optimization algorithm for flowshop scheduling problem. Information Processing Letters 108 4 (2008) 204-209
    • (2008) Information Processing Letters , vol.108 , Issue.4 , pp. 204-209
    • Zhang, C.S.1    Sun, J.G.2    Zhu, X.J.3    Yang, Q.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.