메뉴 건너뛰기




Volumn , Issue , 2009, Pages 432-438

Dimensionality Reduction by self organizing maps that preserve distances in output space

Author keywords

[No Author keywords available]

Indexed keywords

DIMENSIONALITY REDUCTION; DOCUMENT INDEXING; FACE IMAGES; HIGH-DIMENSIONAL; INPUT DATAS; KEY FEATURE; KEY ISSUES; LEARNING PROCESS; NONLINEAR MANIFOLDS; SELF-ORGANIZATIONS;

EID: 70449434345     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2009.5179009     Document Type: Conference Paper
Times cited : (10)

References (23)
  • 5
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • URL
    • J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290 (2000) 2319-2323. URL http://isomap. Stanford.edu/
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 6
    • 70449386153 scopus 로고    scopus 로고
    • K. Q. Weinberger, L. K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, in: AAAI, AAAI Press, 2006.
    • K. Q. Weinberger, L. K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, in: AAAI, AAAI Press, 2006.
  • 7
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schlkopf, A. Smola, K. Mller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (1998) 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schlkopf, B.1    Smola, A.2    Mller, K.3
  • 10
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization
    • S. Lafon, A. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (9) (2006) 1393-1403.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.9 , pp. 1393-1403
    • Lafon, S.1    Lee, A.2
  • 11
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M. A. Kramer, Nonlinear principal component analysis using autoassociative neural networks, AICHE Journal 37 (1991) 233-243.
    • (1991) AICHE Journal , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 13
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 505-507.
    • (2006) Science , vol.313 , pp. 505-507
    • Hinton, G.1    Salakhutdinov, R.2
  • 14
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290 (2000) 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 15
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • URL
    • M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15 (6) (2003) 1373-1396. URL http://neco.mitpress.org/cgi/content/abstract/15/6/1373
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 16
    • 70449404519 scopus 로고    scopus 로고
    • D. Donoho, C. Grimes, Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data, in: Proceedings of the National Academy of Sciences, 102 (21), 2005, pp. 7426-7431.
    • D. Donoho, C. Grimes, Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data, in: Proceedings of the National Academy of Sciences, Vol. 102 (21), 2005, pp. 7426-7431.
  • 17
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment
    • Z. Zhang, H. Zha, Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment, SIAM Journal of Scientific Computing 26 (1) (2004) 313-338.
    • (2004) SIAM Journal of Scientific Computing , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 18
    • 33749060679 scopus 로고    scopus 로고
    • X. F. W. C. L. Teng, H. Li, I. Shen., Dimension reduction of microarray data based on local tangent space alignment, in: Proceedings of the 4th IEEE International Conference on Cognitive Informatics, 2005, pp. 154-159.
    • X. F. W. C. L. Teng, H. Li, I. Shen., Dimension reduction of microarray data based on local tangent space alignment, in: Proceedings of the 4th IEEE International Conference on Cognitive Informatics, 2005, pp. 154-159.
  • 20
    • 0037059052 scopus 로고    scopus 로고
    • arXiv:, doi:10.1073/pnas.242424399. URL, http://www.pnas.org/cgi/content/abstract/99/25/15869
    • D. K. Agrafiotis, H. Xu, A self-organizing principle for learning nonlinear manifolds, PNAS 99 (25) (2002) 15869-15872. arXiv:http://www.pnas.org/ cgi/reprint/99/25/l5869.pdf, doi:10.1073/pnas.242424399. URL http://www.pnas.org/cgi/content/abstract/99/25/15869
    • (2002) A self-organizing principle for learning nonlinear manifolds, PNAS , vol.99 , Issue.25 , pp. 15869-15872
    • Agrafiotis, D.K.1    Xu, H.2
  • 21
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics 43 (1982) 59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.