-
4
-
-
0003562364
-
-
Springer-Verlag, New York, theory and applications
-
I. Borg, P. Groenen, Modern multidimensional scaling, Springer-Verlag, New York, 1997, theory and applications.
-
(1997)
Modern multidimensional scaling
-
-
Borg, I.1
Groenen, P.2
-
5
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
URL
-
J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290 (2000) 2319-2323. URL http://isomap. Stanford.edu/
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
6
-
-
70449386153
-
-
K. Q. Weinberger, L. K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, in: AAAI, AAAI Press, 2006.
-
K. Q. Weinberger, L. K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, in: AAAI, AAAI Press, 2006.
-
-
-
-
7
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schlkopf, A. Smola, K. Mller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation 10 (1998) 1299-1319.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schlkopf, B.1
Smola, A.2
Mller, K.3
-
9
-
-
33745342032
-
-
R. C. B. Nadler, S. Lafon, I. Kevrekidis, Diffusion maps, spectral clustering and the reaction coordinates of dynamical systems, Applied and Computational Harmonic Analysis: Special Issue on Diffusion Maps and Wavelets 21 (2006) 113-127.
-
(2006)
Diffusion maps, spectral clustering and the reaction coordinates of dynamical systems, Applied and Computational Harmonic Analysis: Special Issue on Diffusion Maps and Wavelets
, vol.21
, pp. 113-127
-
-
Nadler, R.C.B.1
Lafon, S.2
Kevrekidis, I.3
-
10
-
-
33746476985
-
Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization
-
S. Lafon, A. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (9) (2006) 1393-1403.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.9
, pp. 1393-1403
-
-
Lafon, S.1
Lee, A.2
-
11
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
M. A. Kramer, Nonlinear principal component analysis using autoassociative neural networks, AICHE Journal 37 (1991) 233-243.
-
(1991)
AICHE Journal
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
13
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. Hinton, R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006) 505-507.
-
(2006)
Science
, vol.313
, pp. 505-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
14
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290 (2000) 2323-2326.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
15
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
URL
-
M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15 (6) (2003) 1373-1396. URL http://neco.mitpress.org/cgi/content/abstract/15/6/1373
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
16
-
-
70449404519
-
-
D. Donoho, C. Grimes, Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data, in: Proceedings of the National Academy of Sciences, 102 (21), 2005, pp. 7426-7431.
-
D. Donoho, C. Grimes, Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data, in: Proceedings of the National Academy of Sciences, Vol. 102 (21), 2005, pp. 7426-7431.
-
-
-
-
17
-
-
14544307975
-
Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment
-
Z. Zhang, H. Zha, Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment, SIAM Journal of Scientific Computing 26 (1) (2004) 313-338.
-
(2004)
SIAM Journal of Scientific Computing
, vol.26
, Issue.1
, pp. 313-338
-
-
Zhang, Z.1
Zha, H.2
-
18
-
-
33749060679
-
-
X. F. W. C. L. Teng, H. Li, I. Shen., Dimension reduction of microarray data based on local tangent space alignment, in: Proceedings of the 4th IEEE International Conference on Cognitive Informatics, 2005, pp. 154-159.
-
X. F. W. C. L. Teng, H. Li, I. Shen., Dimension reduction of microarray data based on local tangent space alignment, in: Proceedings of the 4th IEEE International Conference on Cognitive Informatics, 2005, pp. 154-159.
-
-
-
-
20
-
-
0037059052
-
-
arXiv:, doi:10.1073/pnas.242424399. URL, http://www.pnas.org/cgi/content/abstract/99/25/15869
-
D. K. Agrafiotis, H. Xu, A self-organizing principle for learning nonlinear manifolds, PNAS 99 (25) (2002) 15869-15872. arXiv:http://www.pnas.org/ cgi/reprint/99/25/l5869.pdf, doi:10.1073/pnas.242424399. URL http://www.pnas.org/cgi/content/abstract/99/25/15869
-
(2002)
A self-organizing principle for learning nonlinear manifolds, PNAS
, vol.99
, Issue.25
, pp. 15869-15872
-
-
Agrafiotis, D.K.1
Xu, H.2
-
21
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics 43 (1982) 59-69.
-
(1982)
Biological Cybernetics
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
|