-
2
-
-
30044442775
-
Solving the Problem of Imbalanced Dataset in the Prediction of Membrane Protein Types Based on Weighted SVM
-
G. P. Liu, L. X. Yao, and J. Yang, "Solving the Problem of Imbalanced Dataset in the Prediction of Membrane Protein Types Based on Weighted SVM, " Journal of Shanghai Jiaotong University, 2005 pp. 1676-1684.
-
(2005)
Journal of Shanghai Jiaotong University
, pp. 1676-1684
-
-
Liu, G.P.1
Yao, L.X.2
Yang, J.3
-
4
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
M. Kubat, R. Holte, and S. Matwin, "Machine learning for the detection of oil spills in satellite radar images, " Machine Learning, 1998 pp. 195-215
-
(1998)
Machine Learning
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
5
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
C. L. Blake, and C. J. Merz, "UCI Repository of machine learning databases, " Irvine, CA: University of California, Department of Information and Computer Science, 1998.
-
(1998)
UCI Repository of machine learning databases
-
-
Blake, C.L.1
Merz, C.J.2
-
7
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kolcz, "Editorial: special issue on learning from imbalanced data sets, " SIGKDD Explorations, 6 (1), pp. 1-6.2004
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
9
-
-
70449386713
-
Uncertainty sampling for one-class classifiers,
-
Washington DC
-
N. V. Chawla, N. Japkowicz, and A. Kolcz, "Uncertainty sampling for one-class classifiers, " In Proc. of the ICML-2003 Workshop: Learning with Imbalanced Data Sets II, Washington DC, 2003 pp. 81-88, :
-
(2003)
Proc. of the ICML-2003 Workshop: Learning with Imbalanced Data Sets II
, pp. 81-88
-
-
Chawla, N.V.1
Japkowicz, N.2
Kolcz, A.3
-
11
-
-
20844458491
-
Mining with rarity: A unifying framework
-
G. M. Weiss, "Mining with rarity: A unifying framework, " SIGKDD Explorations, 6 (1) 2004 pp 7-19
-
(2004)
SIGKDD Explorations
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
-
13
-
-
70449335909
-
-
A. V. D. Bosch, T. Weijters, H. J. V. D. Herik, and W. Daelemans., When small disjuncts abound, try lazy learning:A case study, In Proc. of the Seventh Belgian-Dutch Conference on Machine Learning, 1997 pp. 109-118.
-
A. V. D. Bosch, T. Weijters, H. J. V. D. Herik, and W. Daelemans., "When small disjuncts abound, try lazy learning:A case study, " In Proc. of the Seventh Belgian-Dutch Conference on Machine Learning, 1997 pp. 109-118.
-
-
-
-
15
-
-
58349090428
-
Cluster-based under-sampling approaches for imbalanced data distribution
-
S. J. Yen, and Y. S. Lee. "Cluster-based under-sampling approaches for imbalanced data distribution, " Expert System with Applications, 36, pp 5718-5727, 2009
-
(2009)
Expert System with Applications
, vol.36
, pp. 5718-5727
-
-
Yen, S.J.1
Lee, Y.S.2
-
18
-
-
0001972236
-
Addressing the Course of Imbalanced Training Sets: One-sided Selection,
-
M. Kubat, and S. Matwin, "Addressing the Course of Imbalanced Training Sets: One-sided Selection, " In ICML, 1997, pp. 179-186.
-
(1997)
In ICML
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
19
-
-
0002648330
-
Controlling the sensitivity of support vector machines,
-
K. Veropoulos, C. Campbell, and N. Cristianini, "Controlling the sensitivity of support vector machines, " in Proc of the International Joint Conference on AI, 1999 pp 55-60.
-
(1999)
Proc of the International Joint Conference on AI
, pp. 55-60
-
-
Veropoulos, K.1
Campbell, C.2
Cristianini, N.3
-
20
-
-
11244308266
-
Class-boundary alignment for imbalanced dataset learning,
-
Washington, DC, August
-
G. Wu, and E. Y. Chang, "Class-boundary alignment for imbalanced dataset learning, " in Proc. of the ICML '03 Workshop on Learning from Imbalanced Data Sets, Washington, DC, August 2003
-
(2003)
Proc. of the ICML '03 Workshop on Learning from Imbalanced Data Sets
-
-
Wu, G.1
Chang, E.Y.2
-
21
-
-
27144540575
-
Class imbalances versus small disjuncts
-
T. Jo and N. Japkowicz. "Class imbalances versus small disjuncts, " ACM SIGKDD Explorations, 6 (1), pp. 40-49, 2004
-
(2004)
ACM SIGKDD Explorations
, vol.6
, Issue.1
, pp. 40-49
-
-
Jo, T.1
Japkowicz, N.2
-
22
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique, " Journal of Artificial Intelligence Research, 16, 2002 pp 321-357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
23
-
-
84867577175
-
The foundations of cost-sensitive learning,
-
international joint conference on artificial intelligence
-
C. Elkan, "The foundations of cost-sensitive learning, " In Proc of the 17th international joint conference on artificial intelligence. 2001 pp. 973-978.
-
(2001)
Proc of the 17th
, pp. 973-978
-
-
Elkan, C.1
-
25
-
-
34547673383
-
Cost-sensitive boosting for classification of imbalanced data
-
S. Yanmin, S. K. Mohamed, K. C. Andrew Wong and W. Yang. "Cost-sensitive boosting for classification of imbalanced data " Pattern Recognition, 40, 2007 pp 3358-3378
-
(2007)
Pattern Recognition
, vol.40
, pp. 3358-3378
-
-
Yanmin, S.1
Mohamed, S.K.2
Andrew Wong, K.C.3
Yang, W.4
|