메뉴 건너뛰기




Volumn 28, Issue 11-12, 2009, Pages 1486-1506

Growing hidden markov models: An incremental tool for learning and predicting human and vehicle motion

Author keywords

Hidden Markov models; Motion prediction; Structure learning

Indexed keywords

CURRENT TECHNIQUES; INTERNAL STATE; LASER SCANNER; MACHINE LEARNING TECHNIQUES; MOTION MODELS; MOTION PATTERN; MOTION PREDICTION; OFF-LINE LEARNING; REAL TRAJECTORIES; RESEARCH DOMAINS; STATISTICAL MODELS; STRUCTURE LEARNING; VEHICLE MOTION;

EID: 70449392781     PISSN: 02783649     EISSN: 17413176     Source Type: Journal    
DOI: 10.1177/0278364909342118     Document Type: Conference Paper
Times cited : (95)

References (42)
  • 17
    • 0000470942 scopus 로고
    • Learning the distribution of object trajectories for event recognition
    • Johnson, N. and Hogg, D. (1995). Learning the distribution of object trajectories for event recognition. Proceedings of the British Machine Vision Conference, Vol. 2, pp. 583-592.
    • (1995) Proceedings of the British Machine Vision Conference , vol.2 , pp. 583-592
    • Johnson, N.1    Hogg, D.2
  • 18
    • 0022691022 scopus 로고
    • Maximum likelihood estimation for multivariate mixture observations of Markov chains
    • Juang, B.-H., Levinson, S.E. and Sondhi, M.M. (1986). Maximum likelihood estimation for multivariate mixture observations of Markov chains. IEEE Transactions on Information Theory, 32 (2). 307-309.
    • (1986) IEEE Transactions on Information Theory , vol.32 , Issue.2 , pp. 307-309
    • Juang, B.-H.1    Levinson, S.E.2    Sondhi, M.M.3
  • 20
    • 0036531325 scopus 로고    scopus 로고
    • Reducing the complexity of the fuzzy C-means algorithm
    • Kolen, J.F. and Hutcheson, T. (2002). Reducing the complexity of the fuzzy C-means algorithm. IEEE Transactions on Fuzzy Systems, 10 (2). 263-267.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 263-267
    • Kolen, J.F.1    Hutcheson, T.2
  • 21
    • 45849101711 scopus 로고    scopus 로고
    • Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains
    • 784
    • Kulic, D., Takano, W. and Nakamura, Y. (2008). Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden markov chains. The International Journal of Robotics Research, 27 (7). 761-784.
    • (2008) The International Journal of Robotics Research , vol.27 , Issue.7
    • Kulic, D.1    Takano, W.2    Nakamura, Y.3
  • 24
    • 0348231687 scopus 로고    scopus 로고
    • Tracking multiple vehicles using foreground, background and shape models
    • Magee, D. (2004). Tracking multiple vehicles using foreground, background and shape models. Image and Vision Computing, 22: 143-155.
    • (2004) Image and Vision Computing , vol.22 , pp. 143-155
    • Magee, D.1
  • 27
    • 0002788893 scopus 로고    scopus 로고
    • A new view of the em algorithm that justifies incremental, sparse and other variants
    • Dordrecht, Kluwer, pp.
    • Neal, R.M. and Hinton, G.E. (1998). A new view of the EM algorithm that justifies incremental, sparse and other variants. Learning in Graphical Models, Jordan, M. I. (ed.). Dordrecht, Kluwer, pp. 355-368.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 30
    • 0000800741 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L.R. (1990). A tutorial on hidden Markov models and selected applications in speech recognition. Readings in Speech Recognition, pp. 267-296.
    • (1990) Readings in Speech Recognition , pp. 267-296
    • Rabiner, L.R.1
  • 31
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6 (2). 461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 0002297358 scopus 로고
    • Hidden Markov model induction by Bayesian model merging
    • San Mateo, CA, Morgan Kaufmann, pp.
    • Stolcke, A. and Omohundro, S. (1993). Hidden Markov model induction by Bayesian model merging. Advances in Neural Information Processing Systems, Vol. 5, Hanson, S. J., Cowan, J. D. and Giles, C. L. (eds) San Mateo, CA, Morgan Kaufmann, pp. 11-18.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 11-18
    • Stolcke, A.1    Omohundro, S.2
  • 34
    • 0037800711 scopus 로고    scopus 로고
    • Learning spatio-temporal patterns for predicting object behaviour
    • Sumpter, N. and Bulpitt, A. (2000). Learning spatio-temporal patterns for predicting object behaviour. Image and Vision Computing, 18 (9). 697-704.
    • (2000) Image and Vision Computing , vol.18 , Issue.9 , pp. 697-704
    • Sumpter, N.1    Bulpitt, A.2
  • 37
    • 63149158306 scopus 로고    scopus 로고
    • Intentional motion on-line learning and prediction
    • Vasquez, D. and Fraichard, T. (2005). Intentional motion on-line learning and prediction. Field and Service Robotics, Port Douglas, Australia.
    • Field and Service Robotics
    • Vasquez, D.1    Fraichard, T.2
  • 41
    • 33644522380 scopus 로고    scopus 로고
    • Beyond tracking: Modelling activity and understanding behaviour
    • Xiang, T. and Gong, S. (2006). Beyond tracking: modelling activity and understanding behaviour. International Journal of Computer Vision, 67 (1). 21-51.
    • (2006) International Journal of Computer Vision , vol.67 , Issue.1 , pp. 21-51
    • Xiang, T.1    Gong, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.