메뉴 건너뛰기




Volumn , Issue , 2009, Pages 161-164

MRI resolution enhancement using total variation regularization

Author keywords

Edge preserved sampling; Image enhancement; Skull stripping; Total variation

Indexed keywords

ANATOMICAL INFORMATION; BRAIN IMAGES; BRAIN MRI; DECONVOLUTION MODELS; EDGE PRESERVING; EDGE-PRESERVED SAMPLING; NOVEL METHODS; PRE-PROCESSING STEP; RECONSTRUCTION PROBLEMS; RESOLUTION ENHANCEMENT; SKULL STRIPPING; TOTAL VARIATION; TOTAL VARIATION NORM; TOTAL VARIATION REGULARIZATION; VOLUMETRIC IMAGES;

EID: 70449382028     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISBI.2009.5193008     Document Type: Conference Paper
Times cited : (31)

References (11)
  • 1
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • L.M. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. and Math. Phys., 7:200-217, 1967.
    • (1967) USSR Comput. Math. and Math. Phys , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 3
    • 0031332301 scopus 로고    scopus 로고
    • Restoration of a single super-resolution image from several blurred,noisy, and undersampled measured images
    • M. Elad and A. Feuer. Restoration of a single super-resolution image from several blurred,noisy, and undersampled measured images. IEEE Tran. Image Processing, 6(12):1646-1658, 1997.
    • (1997) IEEE Tran. Image Processing , vol.6 , Issue.12 , pp. 1646-1658
    • Elad, M.1    Feuer, A.2
  • 6
    • 55649094906 scopus 로고    scopus 로고
    • Image super-resolution by TVregularizationand Bregman iteration
    • A. Marquina and S. J. Osher. Image super-resolution by TVregularizationand Bregman iteration. Journal of Scientific omputing, 37(3):367-382, 2008.
    • (2008) Journal of Scientific omputing , vol.37 , Issue.3 , pp. 367-382
    • Marquina, A.1    Osher, S.J.2
  • 7
    • 19844370110 scopus 로고    scopus 로고
    • An iterative regularization method for Total Variation-based image restoration
    • S. J. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for Total Variation-based image restoration. Multiscale Modeling and Simulation, 4(2):460-489, 2005.
    • (2005) Multiscale Modeling and Simulation , vol.4 , Issue.2 , pp. 460-489
    • Osher, S.J.1    Burger, M.2    Goldfarb, D.3    Xu, J.4    Yin, W.5
  • 8
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60(1-4):259-268, 1992.
    • (1992) Physica D , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 9
    • 60149104284 scopus 로고    scopus 로고
    • D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga. Online resource for segmentation validation. Neuroimage, doi:10.1016/j. neuroimage.2008.10.066.
    • D. W. Shattuck, G. Prasad, M. Mirza, K. L. Narr, and A. W. Toga. Online resource for segmentation validation. Neuroimage, doi:10.1016/j. neuroimage.2008.10.066.
  • 10
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • S. M. Smith. Fast robust automated brain extraction. Human Brain Mapping, 17(3):143-155, 2002.
    • (2002) Human Brain Mapping , vol.17 , Issue.3 , pp. 143-155
    • Smith, S.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.