메뉴 건너뛰기




Volumn 28, Issue 23, 2009, Pages 2876-2890

Fully specified bootstrap confidence intervals for the difference of two independent binomial proportions based on the median unbiased estimator

Author keywords

Bootstrap; Confidence interval; Coverage probability; Median unbiased estimate

Indexed keywords

AGRESTI AND CAFFO METHOD; ANALYTICAL ERROR; ARTICLE; ATTRIBUTABLE RISK; BINOMIAL DISTRIBUTION; BOOTSTRAPPING; CHEN QUASI EXACT METHOD; CONFIDENCE INTERVAL; CONTROLLED STUDY; MEDIAN UNBIASED ESTIMATE; PROBABILITY; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL PARAMETERS; WALD INTERVALS;

EID: 70449380622     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3670     Document Type: Article
Times cited : (14)

References (13)
  • 2
    • 0032580377 scopus 로고    scopus 로고
    • Interval estimate for the difference between independent proportions: Comparison of eleven methods
    • DOI: 10.1002/(SICI)1097-0258(19980430)17:8〈873:: AID-SIM779〉3.0.CO;2-I
    • Newcombe RG. Interval estimate for the difference between independent proportions: comparison of eleven methods. Statistics in Medicine 1998; 17:873-890. DOI: 10.1002/(SICI)1097-0258(19980430)17:8〈873:: AID-SIM779〉3.0.CO;2-I.
    • (1998) Statistics in Medicine , vol.17 , pp. 873-890
    • Newcombe, R.G.1
  • 3
    • 0032756788 scopus 로고    scopus 로고
    • Test-based exact confidence intervals for the difference of two binomial proportions
    • Chan ISF, Zhang Z. Test-based exact confidence intervals for the difference of two binomial proportions. Biometrics 1999; 55:1202-1209.
    • (1999) Biometrics , vol.55 , pp. 1202-1209
    • Chan, I.S.F.1    Zhang, Z.2
  • 4
    • 0037196902 scopus 로고    scopus 로고
    • A quasi-exact method for the confidence intervals of the difference of two independent binomial proportions in small sample cases
    • DOI 10.1002/sim.1053
    • Chen X. A quasi-exact method for the confidence intervals of the difference of two independent binomial proportions in small sample cases. Statistics in Medicine 2002; 21:943-956. DOI: 10.1002/sim.1053. (Pubitemid 34211059)
    • (2002) Statistics in Medicine , vol.21 , Issue.6 , pp. 943-956
    • Chen, X.1
  • 5
    • 0034554907 scopus 로고    scopus 로고
    • Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures
    • Agresti A, Caffo B. Simple, effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician 2000; 54:280-288. (Pubitemid 33204723)
    • (2000) American Statistician , vol.54 , Issue.4 , pp. 280-288
    • Agresti, A.1    Caffo, B.2
  • 7
    • 0003363232 scopus 로고    scopus 로고
    • Median unbiased estimators
    • Johnson NL (ed.). Wiley: New York
    • Read CB. Median unbiased estimators. In Encyclopedia of Statistical Sciences, Johnson NL (ed.). Wiley: New York, 2004; 424-426.
    • (2004) Encyclopedia of Statistical Sciences , pp. 424-426
    • Read, C.B.1
  • 8
    • 0026742840 scopus 로고
    • Simple SAS macros for the calculation of exact binomial and Poisson confidence intervals
    • Daly L. Simple SAS macros for the calculation of exact binomial and Poisson confidence intervals. Computers in Biology and Medicine 1992; 22:351-361.
    • (1992) Computers in Biology and Medicine , vol.22 , pp. 351-361
    • Daly, L.1
  • 11
  • 12
    • 0003242435 scopus 로고
    • The jackknife, the bootstrap, and other resampling plans
    • CBMS-NSF
    • Efron B. The jackknife, the bootstrap, and other resampling plans. SIAM Monograph 38, CBMS-NSF, 1982.
    • (1982) SIAM Monograph 38
    • Efron, B.1
  • 13
    • 0032377357 scopus 로고    scopus 로고
    • Approximate is better than 'exact' for interval estimation of binomial proportions
    • Agresti A, Coull BA. Approximate is better than 'exact' for interval estimation of binomial proportions. American Statistician 1998; 52:119-126.
    • (1998) American Statistician , vol.52 , pp. 119-126
    • Agresti, A.1    Coull, B.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.