-
1
-
-
33645908165
-
Laplace-Beltrami spectra as Shape-DNA of surfaces and solids
-
M. Reuter, F.E. Wolter, and N. Peinecke, "Laplace-Beltrami spectra as Shape-DNA of surfaces and solids," Computer-Aided Design, vol. 38, pp. 342-366, 2006.
-
(2006)
Computer-Aided Design
, vol.38
, pp. 342-366
-
-
Reuter, M.1
Wolter, F.E.2
Peinecke, N.3
-
2
-
-
38149113525
-
Global medical shape analysis using the Laplace-Beltrami spectrum
-
M. Niethammer, M. Reuter, F.-E. Wolter, S. Bouix, N. Peinecke M.-S. Koo, and M. Shenton, "Global medical shape analysis using the Laplace-Beltrami spectrum," in Proc. MICCAI, 2007, vol. 1, pp. 850-857.
-
(2007)
Proc. MICCAI
, vol.1
, pp. 850-857
-
-
Niethammer, M.1
Reuter, M.2
Wolter, F.-E.3
Bouix, S.4
Peinecke, N.5
Koo, M.-S.6
Shenton, M.7
-
3
-
-
0000661044
-
Eigenvalues of the laplace operator on certain manifolds
-
J. Milnor, "Eigenvalues of the laplace operator on certain manifolds," Proc. Nat. Acad. Sci. U.S.A., vol. 51, pp. 542, 1964.
-
(1964)
Proc. Nat. Acad. Sci. U.S.A
, vol.51
, pp. 542
-
-
Milnor, J.1
-
4
-
-
0000518404
-
Riemannian coverings and isospectral manifolds
-
Sunada T, "Riemannian coverings and isospectral manifolds," Ann. of Math., vol. 121, no. 1, pp. 169-186, 1985.
-
(1985)
Ann. of Math
, vol.121
, Issue.1
, pp. 169-186
-
-
Sunada, T.1
-
5
-
-
84967791504
-
One cannot hear the shape of a drum
-
Gordon C, Webb D., and Wolpert S, "One cannot hear the shape of a drum," Bull. Am. Math.Soc., vol. 27, no. 1, pp. 134-138, 1992.
-
(1992)
Bull. Am. Math.Soc
, vol.27
, Issue.1
, pp. 134-138
-
-
Gordon, C.1
Webb, D.2
Wolpert, S.3
-
6
-
-
21844488456
-
Drums that sound the same
-
Chapman J. S, "Drums that sound the same," Amer. Math. Monthly, vol. 102, no. 2, pp. 124-138, 1995.
-
(1995)
Amer. Math. Monthly
, vol.102
, Issue.2
, pp. 124-138
-
-
Chapman, J.S.1
-
7
-
-
29444443527
-
On hearing the shape of a drum
-
Fisher M E, "On hearing the shape of a drum," J. Combinatorial Theory, vol. 1, pp. 105-125, 1966.
-
(1966)
J. Combinatorial Theory
, vol.1
, pp. 105-125
-
-
Fisher, M.E.1
-
8
-
-
70449439266
-
-
Brooks Robert, Isospectral graphs and isospectral surfaces, Seminaire de Theorie Spectrale et Geometrie, 15, pp. 105-113, Annee 1996-1997.
-
Brooks Robert, "Isospectral graphs and isospectral surfaces," Seminaire de Theorie Spectrale et Geometrie, vol. 15, pp. 105-113, Annee 1996-1997.
-
-
-
-
9
-
-
33947227399
-
Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator
-
A. Qiu, D. Bitouk, and M. I. Miller, "Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator," IEEE Trans. Med. Imag., vol. 25, no. 10, pp. 1296-1306, 2006.
-
(2006)
IEEE Trans. Med. Imag
, vol.25
, Issue.10
, pp. 1296-1306
-
-
Qiu, A.1
Bitouk, D.2
Miller, M.I.3
-
10
-
-
0001199139
-
Embedding riemannian manifolds by their heat kernel
-
P. Bérard, G. Besson, and S. Gallot, "Embedding riemannian manifolds by their heat kernel," Geom. Funct. Anal., vol. 4, no. 4, pp. 373-398, 1994.
-
(1994)
Geom. Funct. Anal
, vol.4
, Issue.4
, pp. 373-398
-
-
Bérard, P.1
Besson, G.2
Gallot, S.3
-
11
-
-
0035568739
-
Geometric propertiess of eigenfunctions
-
D. Jankobson, Nadirashbili N, and J. Toth, "Geometric propertiess of eigenfunctions," Russian Math. Surveys, vol. 56, no. 6, pp. 1085-1105, 2001.
-
(2001)
Russian Math. Surveys
, vol.56
, Issue.6
, pp. 1085-1105
-
-
Jankobson, D.1
Nadirashbili, N.2
Toth, J.3
-
12
-
-
69849107670
-
Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons
-
Y. Shi, R. Lai, S. Krishna, N. Sicotte, I. Dinov, and A. W. Toga, "Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons," in Proc. MMBIA, 2008.
-
(2008)
Proc. MMBIA
-
-
Shi, Y.1
Lai, R.2
Krishna, S.3
Sicotte, N.4
Dinov, I.5
Toga, A.W.6
-
13
-
-
84987687149
-
Harmonic surface mapping with Laplace-Beltrami eigenmaps
-
Y. Shi, R. Lai, K. Kern, N. Sicotte, I. Dinov, and A. W. Toga, "Harmonic surface mapping with Laplace-Beltrami eigenmaps," in Proc. MICCAI, 2008.
-
(2008)
Proc. MICCAI
-
-
Shi, Y.1
Lai, R.2
Kern, K.3
Sicotte, N.4
Dinov, I.5
Toga, A.W.6
-
14
-
-
51249192264
-
Eigenfunctions and nodal sets
-
Shiu-Yuen Cheng, "Eigenfunctions and nodal sets," Comment. Math. Helvetici, vol. 51, pp. 43-55, 1976.
-
(1976)
Comment. Math. Helvetici
, vol.51
, pp. 43-55
-
-
Cheng, S.-Y.1
-
15
-
-
25844479881
-
Resolving isospectral 'drums' by counting nodal domains
-
S. Gnutzmann, U. Smilansky, and N. Sondergaard, "Resolving isospectral 'drums' by counting nodal domains," J. Phys. A, vol. 38, 8912(2005).
-
(2005)
J. Phys. A
, vol.38
, pp. 8912
-
-
Gnutzmann, S.1
Smilansky, U.2
Sondergaard, N.3
-
16
-
-
33748665803
-
Can one count the shape of a drum?
-
S. Gnutzmann, P. Karageorge, and U. Smilansky, "Can one count the shape of a drum?," Phys. Rev. Lett., vol. 97, 090201(2006).
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 090201
-
-
Gnutzmann, S.1
Karageorge, P.2
Smilansky, U.3
-
17
-
-
34447099476
-
A trace formula for the nodal count sequence
-
S. Gnutzmann, P. Karageorge, and U. Smilansky, "A trace formula for the nodal count sequence," Eur. Phy. J. Speical Topics, vol. 145, pp. 217-229, 2007.
-
(2007)
Eur. Phy. J. Speical Topics
, vol.145
, pp. 217-229
-
-
Gnutzmann, S.1
Karageorge, P.2
Smilansky, U.3
-
18
-
-
33947155537
-
Nodal domians on isosepctral quantum graphs: The resolution of isospectrality?
-
R. Band, T. Shapira, and U. Smilansky, "Nodal domians on isosepctral quantum graphs: the resolution of isospectrality?," J. Phys. A, vol. 39, 13999(2006).
-
(2006)
J. Phys. A
, vol.39
, pp. 13999
-
-
Band, R.1
Shapira, T.2
Smilansky, U.3
-
19
-
-
44449141934
-
Counting nodal domains on surfaces of revolution
-
Panos D. Karageorge and Uzy Smilansky, "Counting nodal domains on surfaces of revolution," J. Phys. A: Math. Theor., vol. 41, 205102(2008).
-
(2008)
J. Phys. A: Math. Theor
, vol.41
, pp. 205102
-
-
Karageorge, P.D.1
Smilansky, U.2
-
20
-
-
0003552714
-
-
Prentice-Hall, Inc, Englewood Cliffs,N.J
-
Gilbert Strang and George J.Fix, An analysis of the finite elment method, Prentice-Hall, Inc., Englewood Cliffs,N.J., 1973.
-
(1973)
An analysis of the finite elment method
-
-
Strang, G.1
Fix, G.J.2
|