-
5
-
-
3543051164
-
-
10.1103/PhysRevLett.83.2502
-
C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 83, 2502 (1999). 10.1103/PhysRevLett.83.2502
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 2502
-
-
Raman, C.1
Köhl, M.2
Onofrio, R.3
Durfee, D.S.4
Kuklewicz, C.E.5
Hadzibabic, Z.6
Ketterle, W.7
-
6
-
-
27144506288
-
-
10.1103/PhysRevA.72.013603
-
L. De Sarlo, L. Fallani, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Phys. Rev. A 72, 013603 (2005). 10.1103/PhysRevA.72.013603
-
(2005)
Phys. Rev. A
, vol.72
, pp. 013603
-
-
De Sarlo, L.1
Fallani, L.2
Lye, J.E.3
Modugno, M.4
Saers, R.5
Fort, C.6
Inguscio, M.7
-
7
-
-
34548090766
-
-
10.1103/PhysRevLett.99.070402
-
D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C. Sanner, and W. Ketterle, Phys. Rev. Lett. 99, 070402 (2007). 10.1103/PhysRevLett.99.070402
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 070402
-
-
Miller, D.E.1
Chin, J.K.2
Stan, C.A.3
Liu, Y.4
Setiawan, W.5
Sanner, C.6
Ketterle, W.7
-
15
-
-
70350784653
-
-
arXiv:0904.3179.
-
Y. Yunomae, D. Yamamoto, I. Danshita, N. Yokoshi, and S. Tsuchiya, e-print arXiv:0904.3179.
-
-
-
Yunomae, Y.1
Yamamoto, D.2
Danshita, I.3
Yokoshi, N.4
Tsuchiya, S.5
-
18
-
-
0041917498
-
-
Ab initio Monte Carlo simulations give β=-0.58±0.01. See 10.1103/PhysRevLett.91.050401;
-
Ab initio Monte Carlo simulations give β=-0.58±0.01. See J. Carlson, S.-Y. Chang, V. R. Pandharipande, and K. E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003) 10.1103/PhysRevLett.91.050401
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 050401
-
-
Carlson, J.1
Chang, S.-Y.2
Pandharipande, V.R.3
Schmidt, K.E.4
-
19
-
-
19744362219
-
-
10.1103/PhysRevLett.93.200404;
-
G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004) 10.1103/PhysRevLett.93.200404
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 200404
-
-
Astrakharchik, G.E.1
Boronat, J.2
Casulleras, J.3
Giorgini, S.4
-
20
-
-
27144483827
-
-
10.1103/PhysRevLett.95.060401
-
J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 (2005). The value predicted by the BdG theory is instead β=-0.41. We use this value whenever we plot our BdG results for fermions. When theory is compared with experimental data, as in Fig., we use β=-0.58 for the latter. 10.1103/PhysRevLett.95. 060401
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 060401
-
-
Carlson, J.1
Reddy, S.2
-
21
-
-
70350767032
-
-
We observe that, in the LDA hydrodynamic theory, n (z) and v (z) exhibit a kink at the point where v (z) = cs (z), with a finite jump in the first derivative, and one cannot construct a stationary solution for v (z) > cs (z).
-
We observe that, in the LDA hydrodynamic theory, n (z) and v (z) exhibit a kink at the point where v (z) = cs (z), with a finite jump in the first derivative, and one cannot construct a stationary solution for v (z) > cs (z).
-
-
-
-
24
-
-
0000676691
-
-
10.1103/PhysRevE.55.2835
-
V. Hakim, Phys. Rev. E 55, 2835 (1997). 10.1103/PhysRevE.55.2835
-
(1997)
Phys. Rev. e
, vol.55
, pp. 2835
-
-
Hakim, V.1
-
26
-
-
70350771750
-
-
Whenever the critical condition for Landau instability is reached at a position z0 far from the barrier edge, at a distance much larger than the healing length ξ, the results for the critical velocity are insensitive to the details of the shape of the barrier and are expected to be the same for both sharp and smooth barrier. In the LDA limit, this condition is satisfied and, indeed, our results for the rectangular barrier are consistent with the results discussed in Ref. for a generic slowly varying potential. Of course, the LDA would not be reliable in predicting, for example, the behavior of the density distribution near the edge of the barrier, within a distance of order ξ.
-
Whenever the critical condition for Landau instability is reached at a position z0 far from the barrier edge, at a distance much larger than the healing length ξ, the results for the critical velocity are insensitive to the details of the shape of the barrier and are expected to be the same for both sharp and smooth barrier. In the LDA limit, this condition is satisfied and, indeed, our results for the rectangular barrier are consistent with the results discussed in Ref. for a generic slowly varying potential. Of course, the LDA would not be reliable in predicting, for example, the behavior of the density distribution near the edge of the barrier, within a distance of order ξ.
-
-
-
-
27
-
-
0036655861
-
-
10.1103/PhysRevA.66.013610
-
N. Pavloff, Phys. Rev. A 66, 013610 (2002). 10.1103/PhysRevA.66.013610
-
(2002)
Phys. Rev. A
, vol.66
, pp. 013610
-
-
Pavloff, N.1
-
28
-
-
66649122825
-
-
10.1103/PhysRevA.79.063608
-
A. M. Leszczyszyn, G. A. El, Yu. G. Gladush, and A. M. Kamchatnov, Phys. Rev. A 79, 063608 (2009). 10.1103/PhysRevA.79.063608
-
(2009)
Phys. Rev. A
, vol.79
, pp. 063608
-
-
Leszczyszyn, A.M.1
El, G.A.2
Gladush Yu., G.3
Kamchatnov, A.M.4
-
32
-
-
0033246313
-
-
10.1103/RevModPhys.71.463
-
F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999). 10.1103/RevModPhys.71.463
-
(1999)
Rev. Mod. Phys.
, vol.71
, pp. 463
-
-
Dalfovo, F.1
Giorgini, S.2
Pitaevskii, L.3
Stringari, S.4
-
34
-
-
70350787715
-
-
Given j and n0, Eq. admits two symmetric bounded stationary solutions which merge and disappear at the critical point j= jc. These solutions can be expressed in terms of Jacobi elliptic functions (Ref.) in which j and n0 enter as parameters. Upon matching the density derivative at the edge of the barrier, one is left with only one free parameter, to be in turn fixed by the matching of the density itself. The latter gives a nonalgebraic equation, which we solve by means of a standard numerical root finding method.
-
Given j and n0, Eq. admits two symmetric bounded stationary solutions which merge and disappear at the critical point j= jc. These solutions can be expressed in terms of Jacobi elliptic functions (Ref.) in which j and n0 enter as parameters. Upon matching the density derivative at the edge of the barrier, one is left with only one free parameter, to be in turn fixed by the matching of the density itself. The latter gives a nonalgebraic equation, which we solve by means of a standard numerical root finding method.
-
-
-
-
35
-
-
0035679309
-
-
10.1103/PhysRevA.64.061603
-
B. Wu and Q. Niu, Phys. Rev. A 64, 061603 (R) (2001). 10.1103/PhysRevA.64.061603
-
(2001)
Phys. Rev. A
, vol.64
, pp. 061603
-
-
Wu, B.1
Niu, Q.2
-
38
-
-
0942300226
-
-
10.1103/PhysRevA.68.053611
-
E. Taylor and E. Zaremba, Phys. Rev. A 68, 053611 (2003). 10.1103/PhysRevA.68.053611
-
(2003)
Phys. Rev. A
, vol.68
, pp. 053611
-
-
Taylor, E.1
Zaremba, E.2
-
39
-
-
0036655479
-
-
10.1103/PhysRevA.66.013604
-
D. Diakonov, L. M. Jensen, C. J. Pethick, and H. Smith, Phys. Rev. A 66, 013604 (2002). 10.1103/PhysRevA.66.013604
-
(2002)
Phys. Rev. A
, vol.66
, pp. 013604
-
-
Diakonov, D.1
Jensen, L.M.2
Pethick, C.J.3
Smith, H.4
-
40
-
-
58149234035
-
-
10.1103/PhysRevA.78.063619
-
G. Watanabe, G. Orso, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 78, 063619 (2008). 10.1103/PhysRevA.78.063619
-
(2008)
Phys. Rev. A
, vol.78
, pp. 063619
-
-
Watanabe, G.1
Orso, G.2
Dalfovo, F.3
Pitaevskii, L.P.4
Stringari, S.5
-
41
-
-
0033473107
-
-
In order to cure the ultraviolet divergences in the BdG theory with contact potentials, we use the regularization scheme proposed by 10.1007/s100530050587;
-
In order to cure the ultraviolet divergences in the BdG theory with contact potentials, we use the regularization scheme proposed by G. Bruun, Y. Castin, R. Dum, and K. Burnett, Eur. Phys. J. D 7, 433 (1999) 10.1007/s100530050587
-
(1999)
Eur. Phys. J. D
, vol.7
, pp. 433
-
-
Bruun, G.1
Castin, Y.2
Dum, R.3
Burnett, K.4
-
42
-
-
0037185386
-
-
and 10.1103/PhysRevLett.88.042504
-
and A. Bulgac and Y. Yu, Phys. Rev. Lett. 88, 042504 (2002) We set the cut-off energy EC =50 ER for EF / ER <0.5 and EC =100 EF for EF / ER 0.5. 10.1103/PhysRevLett.88.042504
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 042504
-
-
Bulgac, A.1
Yu, Y.2
-
43
-
-
70350762456
-
-
The creation of fermionic pair-breaking excitations under a barrier implies a transfer of momentum to the barrier on the order of ∼2□ kF. The probability of this process is expected to be proportional to exp (-L kF) and hence to be negligible for large L.
-
The creation of fermionic pair-breaking excitations under a barrier implies a transfer of momentum to the barrier on the order of ∼2□ kF. The probability of this process is expected to be proportional to exp (-L kF) and hence to be negligible for large L.
-
-
-
-
45
-
-
4244091325
-
-
10.1103/PhysRevLett.79.4950;
-
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997) 10.1103/PhysRevLett.79.4950
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 4950
-
-
Smerzi, A.1
Fantoni, S.2
Giovanazzi, S.3
Shenoy, S.R.4
-
48
-
-
0035441230
-
-
10.1103/PhysRevA.64.033610
-
F. Meier and W. Zwerger, Phys. Rev. A 64, 033610 (2001). 10.1103/PhysRevA.64.033610
-
(2001)
Phys. Rev. A
, vol.64
, pp. 033610
-
-
Meier, F.1
Zwerger, W.2
-
49
-
-
33646343984
-
-
An analytic derivation of the current-phase relation for bosons in the presence of a thin barrier is given, for instance, in 10.1088/1367-2630/8/3/044
-
An analytic derivation of the current-phase relation for bosons in the presence of a thin barrier is given, for instance, in I. Danshita, N. Yokoshi, and S. Kurihara, New J. Phys. 8, 44 (2006). 10.1088/1367-2630/8/3/044
-
(2006)
New J. Phys.
, vol.8
, pp. 44
-
-
Danshita, I.1
Yokoshi, N.2
Kurihara, S.3
-
50
-
-
18544396965
-
-
10.1140/epjd/e2003-00284-4
-
M. Krämer, C. Menotti, L. Pitaevskii, and S. Stringari, Eur. Phys. J. D 27, 247 (2003). 10.1140/epjd/e2003-00284-4
-
(2003)
Eur. Phys. J. D
, vol.27
, pp. 247
-
-
Krämer, M.1
Menotti, C.2
Pitaevskii, L.3
Stringari, S.4
-
51
-
-
0035800480
-
-
10.1126/science.1062612
-
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Science 293, 843 (2001). 10.1126/science.1062612
-
(2001)
Science
, vol.293
, pp. 843
-
-
Cataliotti, F.S.1
Burger, S.2
Fort, C.3
Maddaloni, P.4
Minardi, F.5
Trombettoni, A.6
Smerzi, A.7
Inguscio, M.8
-
52
-
-
70350760401
-
-
In Fig., we use the same lattice height used in Ref., which is characterized by the peak value over the sample. If we use the lattice height at the e-2 waist instead, Vmax of both the experimental data (open squares) and our theoretical prediction (filled squares) will be reduced by the same factor and thus the discrepancy still remains.
-
In Fig., we use the same lattice height used in Ref., which is characterized by the peak value over the sample. If we use the lattice height at the e-2 waist instead, Vmax of both the experimental data (open squares) and our theoretical prediction (filled squares) will be reduced by the same factor and thus the discrepancy still remains.
-
-
-
-
53
-
-
37749017028
-
-
10.1103/PhysRevLett.99.260401
-
C. Ryu, M. F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 99, 260401 (2007). 10.1103/PhysRevLett.99. 260401
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 260401
-
-
Ryu, C.1
Andersen, M.F.2
Cladé, P.3
Natarajan, V.4
Helmerson, K.5
Phillips, W.D.6
-
54
-
-
34547254733
-
-
10.1364/OE.15.008619
-
S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. Ohberg, and A. S. Arnold, Opt. Express 15, 8619 (2007). 10.1364/OE.15.008619
-
(2007)
Opt. Express
, vol.15
, pp. 8619
-
-
Franke-Arnold, S.1
Leach, J.2
Padgett, M.J.3
Lembessis, V.E.4
Ellinas, D.5
Wright, A.J.6
Girkin, J.M.7
Ohberg, P.8
Arnold, A.S.9
-
55
-
-
68949149863
-
-
See, for instance, 10.1103/PhysRevA.80.021601
-
See, for instance, F. Piazza, L. A. Collins, and A. Smerzi, Phys. Rev. A 80, 021601 (R) (2009) and references therein. 10.1103/PhysRevA.80.021601
-
(2009)
Phys. Rev. A
, vol.80
, pp. 021601
-
-
Piazza, F.1
Collins, L.A.2
Smerzi, A.3
-
56
-
-
70350753041
-
-
In general, there are also cases where Pc is outside the first Brillouin zone, as we have seen for bosons when the energy exhibits swallow tails. In Appendix, we do not consider this case for simplicity, but the procedure for calculating Pc is the same.
-
In general, there are also cases where Pc is outside the first Brillouin zone, as we have seen for bosons when the energy exhibits swallow tails. In Appendix, we do not consider this case for simplicity, but the procedure for calculating Pc is the same.
-
-
-
-
57
-
-
70350765628
-
-
Note that in this work we always consider a flow along the direction of the 1D lattice. It is worth noticing here that the critical velocity of the superfluid flowing instead along the transverse direction can be larger than the sound velocity for the uniform system cs (0). In fact, since the system is translationally invariant in the transverse direction, one has m□ =m,∂n ∂ P□ e= P□ /m, and κ does not depend on the transverse momentum P□ . On the other hand, due to the periodic potential, κ-1 can be larger than that of the uniform system with the same average density (Refs.). Under these conditions, both the sound velocity in the lattice and the critical velocity, vc = ∂n2 e ∂P2 e = κ-1 /m, are larger than cs (0).
-
Note that in this work we always consider a flow along the direction of the 1D lattice. It is worth noticing here that the critical velocity of the superfluid flowing instead along the transverse direction can be larger than the sound velocity for the uniform system cs (0). In fact, since the system is translationally invariant in the transverse direction, one has m□ =m, ∂n ∂ P□ e= P□ /m, and κ does not depend on the transverse momentum P□. On the other hand, due to the periodic potential, κ-1 can be larger than that of the uniform system with the same average density (Refs.). Under these conditions, both the sound velocity in the lattice and the critical velocity, vc = ∂n2 e ∂P2 e = κ-1 /m, are larger than cs (0).
-
-
-
|