메뉴 건너뛰기




Volumn 50, Issue 10, 2009, Pages

Adiabatic approximation with exponential accuracy for many-body systems and quantum computation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70350733237     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3236685     Document Type: Article
Times cited : (186)

References (55)
  • 1
    • 34250915197 scopus 로고
    • 0044-3328,. 10.1007/BF01343193
    • M. Born and V. Fock, Z. Phys. 0044-3328 51, 165 (1928). 10.1007/BF01343193
    • (1928) Z. Phys. , vol.51 , pp. 165
    • Born, M.1    Fock, V.2
  • 2
    • 0000321758 scopus 로고
    • 0031-9015,. 10.1143/JPSJ.5.435
    • T. Kato, J. Phys. Soc. Jpn. 0031-9015 5, 435 (1950). 10.1143/JPSJ.5.435
    • (1950) J. Phys. Soc. Jpn. , vol.5 , pp. 435
    • Kato, T.1
  • 3
    • 84867880705 scopus 로고
    • North-Holland, Amsterdam
    • A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962), Vol. II.
    • (1962) Quantum Mechanics , vol.2
    • Messiah, A.1
  • 4
    • 70350711518 scopus 로고    scopus 로고
    • E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, eprint arXiv:quant-ph/0001106
    • E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, eprint arXiv:quant-ph/0001106.
  • 6
    • 0036542418 scopus 로고    scopus 로고
    • 1050-2947,. 10.1103/PhysRevA.65.042308
    • J. Roland and N. J. Cerf, Phys. Rev. A 1050-2947 65, 042308 (2002). 10.1103/PhysRevA.65.042308
    • (2002) Phys. Rev. A , vol.65 , pp. 042308
    • Roland, J.1    Cerf, N.J.2
  • 9
    • 0000246806 scopus 로고
    • 0010-3616,. 10.1007/BF02096616
    • G. Nenciu, Commun. Math. Phys. 0010-3616 152, 479 (1993). 10.1007/BF02096616
    • (1993) Commun. Math. Phys. , vol.152 , pp. 479
    • Nenciu, G.1
  • 10
    • 0033471912 scopus 로고    scopus 로고
    • 0010-3616,. 10.1007/s002200050620
    • J. E. Avron and A. Elgart, Commun. Math. Phys. 0010-3616 203, 445 (1999). 10.1007/s002200050620
    • (1999) Commun. Math. Phys. , vol.203 , pp. 445
    • Avron, J.E.1    Elgart, A.2
  • 11
    • 0036501392 scopus 로고    scopus 로고
    • 0022-247X,. 10.1006/jmaa.2001.7765
    • G. A. Hagedorn and A. Joye, J. Math. Anal. Appl. 0022-247X 267, 235 (2002). 10.1006/jmaa.2001.7765
    • (2002) J. Math. Anal. Appl. , vol.267 , pp. 235
    • Hagedorn, G.A.1    Joye, A.2
  • 17
    • 33750165209 scopus 로고    scopus 로고
    • The complexity of the local hamiltonian problem
    • DOI 10.1137/S0097539704445226
    • J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 0097-5397 35, 1070 (2006). 10.1137/S0097539704445226 (Pubitemid 44599919)
    • (2006) SIAM Journal on Computing , vol.35 , Issue.5 , pp. 1070-1097
    • Kempe, J.1    Kitaev, A.2    Regev, O.3
  • 19
    • 34548080068 scopus 로고    scopus 로고
    • Simple proof of equivalence between adiabatic quantum computation and the circuit model
    • DOI 10.1103/PhysRevLett.99.070502
    • A. Mizel, D. A. Lidar, and M. Mitchell, Phys. Rev. Lett. 0031-9007 99, 070502 (2007). 10.1103/PhysRevLett.99.070502 (Pubitemid 47294601)
    • (2007) Physical Review Letters , vol.99 , Issue.7 , pp. 070502
    • Mizel, A.1    Lidar, D.A.2    Mitchell, M.3
  • 21
    • 4043106399 scopus 로고    scopus 로고
    • 1050-2947,. 10.1103/PhysRevA.69.062302
    • J. I. Latorre and R. Orus, Phys. Rev. A 1050-2947 69, 062302 (2004). 10.1103/PhysRevA.69.062302
    • (2004) Phys. Rev. A , vol.69 , pp. 062302
    • Latorre, J.I.1    Orus, R.2
  • 23
    • 33947576067 scopus 로고    scopus 로고
    • Modeling an adiabatic quantum computer via an exact map to a gas of particles
    • DOI 10.1103/PhysRevLett.98.120503
    • A. M. Zagoskin, S. Savel'ev, and F. Nori, Phys. Rev. Lett. 0031-9007 98, 120503 (2007). 10.1103/PhysRevLett.98.120503 (Pubitemid 46481400)
    • (2007) Physical Review Letters , vol.98 , Issue.12 , pp. 120503
    • Zagoskin, A.M.1    Savel'Ev, S.2    Nori, F.3
  • 26
    • 0003362033 scopus 로고    scopus 로고
    • Matrix analysis
    • Springer-Verlag, New York
    • R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics No. 169 (Springer-Verlag, New York, 1997).
    • (1997) Graduate Texts in Mathematics , vol.169
    • Bhatia, R.1
  • 28
  • 30
    • 0002238196 scopus 로고
    • 0950-1207,. 10.1098/rspa.1990.0051
    • M. V. Berry, Proc. R. Soc. London, Ser. A 0950-1207 429, 61 (1990). 10.1098/rspa.1990.0051
    • (1990) Proc. R. Soc. London, Ser. A , vol.429 , pp. 61
    • Berry, M.V.1
  • 31
    • 0001357409 scopus 로고
    • 0003-3804,. 10.1016/0003-4916(89)90179-6
    • G. A. Hagedorn, Ann. Phys. 0003-3804 196, 278 (1989). 10.1016/0003-4916(89)90179-6
    • (1989) Ann. Phys. , vol.196 , pp. 278
    • Hagedorn, G.A.1
  • 32
    • 0009744553 scopus 로고
    • 0003-3804,. 10.1016/0003-4916(59)90082-X
    • A. Lenard, Ann. Phys. 0003-3804 6, 261 (1959). 10.1016/0003-4916(59) 90082-X
    • (1959) Ann. Phys. , vol.6 , pp. 261
    • Lenard, A.1
  • 33
    • 0008570465 scopus 로고
    • 0031-8914,. 10.1016/0031-8914(62)90109-X
    • L. M. Garrido and F. J. Sancho, Physica (Amsterdam) 0031-8914 28, 553 (1962). 10.1016/0031-8914(62)90109-X
    • (1962) Physica (Amsterdam) , vol.28 , pp. 553
    • Garrido, L.M.1    Sancho, F.J.2
  • 34
    • 0000183260 scopus 로고
    • 0010-3616,. 10.1007/BF01206948
    • G. Nenciu, Commun. Math. Phys. 0010-3616 82, 121 (1981). 10.1007/BF01206948
    • (1981) Commun. Math. Phys. , vol.82 , pp. 121
    • Nenciu, G.1
  • 37
    • 33847378907 scopus 로고    scopus 로고
    • Improved gap estimates for simulating Quantum circuits by adiabatic evolution
    • DOI 10.1007/s11128-006-0045-y
    • P. Deift, M. -B. Ruskai, and W. Spitzer, Quantum Inf. Process. 1570-0755 6, 121 (2007). 10.1007/s11128-006-0045-y (Pubitemid 46347672)
    • (2007) Quantum Information Processing , vol.6 , Issue.2 , pp. 121-125
    • Deift, P.1    Ruskai, M.B.2    Spitzer, W.3
  • 39
    • 18444397177 scopus 로고    scopus 로고
    • 1050-2947,. 10.1103/PhysRevA.71.012331
    • M. S. Sarandy and D. A. Lidar, Phys. Rev. A 1050-2947 71, 012331 (2005). 10.1103/PhysRevA.71.012331
    • (2005) Phys. Rev. A , vol.71 , pp. 012331
    • Sarandy, M.S.1    Lidar, D.A.2
  • 40
    • 29144522316 scopus 로고    scopus 로고
    • 0031-9007,. 10.1103/PhysRevLett.95.250503
    • M. S. Sarandy and D. A. Lidar, Phys. Rev. Lett. 0031-9007 95, 250503 (2005). 10.1103/PhysRevLett.95.250503
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 250503
    • Sarandy, M.S.1    Lidar, D.A.2
  • 42
    • 34547843619 scopus 로고    scopus 로고
    • 0010-3616,. 10.1007/s00220-007-0299-y
    • A. Joye, Commun. Math. Phys. 0010-3616 275, 139 (2007). 10.1007/s00220-007-0299-y
    • (2007) Commun. Math. Phys. , vol.275 , pp. 139
    • Joye, A.1
  • 43
    • 0036146412 scopus 로고    scopus 로고
    • 1050-2947,. 10.1103/PhysRevA.65.012322
    • A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A 1050-2947 65, 012322 (2001). 10.1103/PhysRevA.65.012322
    • (2001) Phys. Rev. A , vol.65 , pp. 012322
    • Childs, A.M.1    Farhi, E.2    Preskill, J.3
  • 44
    • 18444410555 scopus 로고    scopus 로고
    • 1050-2947,. 10.1103/PhysRevA.71.032330
    • J. Roland and N. J. Cerf, Phys. Rev. A 1050-2947 71, 032330 (2005). 10.1103/PhysRevA.71.032330
    • (2005) Phys. Rev. A , vol.71 , pp. 032330
    • Roland, J.1    Cerf, N.J.2
  • 48
    • 42549087705 scopus 로고    scopus 로고
    • Towards fault tolerant adiabatic quantum computation
    • DOI 10.1103/PhysRevLett.100.160506
    • D. A. Lidar, Phys. Rev. Lett. 0031-9007 100, 160506 (2008). 10.1103/PhysRevLett.100.160506 (Pubitemid 351590594)
    • (2008) Physical Review Letters , vol.100 , Issue.16 , pp. 160506
    • Lidar, D.A.1
  • 50
    • 19644401362 scopus 로고    scopus 로고
    • 0031-9007,. 10.1103/PhysRevLett.93.160408
    • K. -P. Marzlin and B. C. Sanders, Phys. Rev. Lett. 0031-9007 93, 160408 (2004). 10.1103/PhysRevLett.93.160408
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 160408
    • Marzlin, K.-P.1    Sanders, B.C.2
  • 51
    • 70350715677 scopus 로고    scopus 로고
    • Note that the g (2) factor present in Eq. [evaluated at N=1 and absent in Eq.] gives rise to a discrepancy between the two bounds, unless we set γ=1/14. This does not in fact impose a constraint on the family of Hamiltonians our proof applies to (recall Assumption 1), since in the application of Cauchy's theorem we are free to choose an arbitrarily small integration contour around the real-time axis. In spite of having thus fixed its value, we continue to write γ rather than 1/14, as there is no fundamental importance to this value; it is merely an outcome of our rather loose bounds, e.g., as in Eq..
    • Note that the g (2) factor present in Eq. [evaluated at N=1 and absent in Eq.] gives rise to a discrepancy between the two bounds, unless we set γ=1/14. This does not in fact impose a constraint on the family of Hamiltonians our proof applies to (recall Assumption 1), since in the application of Cauchy's theorem we are free to choose an arbitrarily small integration contour around the real-time axis. In spite of having thus fixed its value, we continue to write γ rather than 1/14, as there is no fundamental importance to this value; it is merely an outcome of our rather loose bounds, e.g., as in Eq..
  • 52
    • 70350725521 scopus 로고    scopus 로고
    • k with k=1. This is required in order to obtain a bound involving just a single power of A and of Β. Failing to do this allows for the possibility that the two bounds will not agree
    • k with k=1. This is required in order to obtain a bound involving just a single power of A and of Β. Failing to do this allows for the possibility that the two bounds will not agree.
  • 54
    • 70350740645 scopus 로고    scopus 로고
    • Note that σ (τ) may in general depend on n. One can see this through a simple example. Imagine a cylinder of gaseous particles with short-ranged interactions. Any particle will interact with all particles inside a sphere of radius rint -the range of the interaction-around it. If we add new particles to the cylinder, at some point (i.e., at some n) all the space inside the shell will be occupied (close packed); hence, the new particles cannot interact with the particle in the center. For such particles, the coupling strength of the interaction with the particle in the center is effectively zero. The other condition we mention, namely time-independence of the graph or lattice, is designed to exclude folding of the system lattice, for example, in the case of large polymer or protein molecules, as this would also potentially allow a dependence of σ (τ) on n.
    • Note that σ (τ) may in general depend on n. One can see this through a simple example. Imagine a cylinder of gaseous particles with short-ranged interactions. Any particle will interact with all particles inside a sphere of radius rint -the range of the interaction-around it. If we add new particles to the cylinder, at some point (i.e., at some n) all the space inside the shell will be occupied (close packed); hence, the new particles cannot interact with the particle in the center. For such particles, the coupling strength of the interaction with the particle in the center is effectively zero. The other condition we mention, namely time-independence of the graph or lattice, is designed to exclude folding of the system lattice, for example, in the case of large polymer or protein molecules, as this would also potentially allow a dependence of σ (τ) on n.
  • 55
    • 47049112942 scopus 로고    scopus 로고
    • 1050-2947,. 10.1103/PhysRevA.78.012308
    • D. A. Lidar, P. Zanardi, and K. Khodjasteh, Phys. Rev. A 1050-2947 78, 012308 (2008). 10.1103/PhysRevA.78.012308
    • (2008) Phys. Rev. A , vol.78 , pp. 012308
    • Lidar, D.A.1    Zanardi, P.2    Khodjasteh, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.