-
1
-
-
34250915197
-
-
0044-3328,. 10.1007/BF01343193
-
M. Born and V. Fock, Z. Phys. 0044-3328 51, 165 (1928). 10.1007/BF01343193
-
(1928)
Z. Phys.
, vol.51
, pp. 165
-
-
Born, M.1
Fock, V.2
-
2
-
-
0000321758
-
-
0031-9015,. 10.1143/JPSJ.5.435
-
T. Kato, J. Phys. Soc. Jpn. 0031-9015 5, 435 (1950). 10.1143/JPSJ.5.435
-
(1950)
J. Phys. Soc. Jpn.
, vol.5
, pp. 435
-
-
Kato, T.1
-
3
-
-
84867880705
-
-
North-Holland, Amsterdam
-
A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962), Vol. II.
-
(1962)
Quantum Mechanics
, vol.2
-
-
Messiah, A.1
-
4
-
-
70350711518
-
-
E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, eprint arXiv:quant-ph/0001106
-
E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, eprint arXiv:quant-ph/0001106.
-
-
-
-
5
-
-
0035917832
-
-
0036-8075,. 10.1126/science.1057726
-
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 0036-8075 292, 472 (2001). 10.1126/science.1057726
-
(2001)
Science
, vol.292
, pp. 472
-
-
Farhi, E.1
Goldstone, J.2
Gutmann, S.3
Lapan, J.4
Lundgren, A.5
Preda, D.6
-
6
-
-
0036542418
-
-
1050-2947,. 10.1103/PhysRevA.65.042308
-
J. Roland and N. J. Cerf, Phys. Rev. A 1050-2947 65, 042308 (2002). 10.1103/PhysRevA.65.042308
-
(2002)
Phys. Rev. A
, vol.65
, pp. 042308
-
-
Roland, J.1
Cerf, N.J.2
-
7
-
-
49749125608
-
-
0031-9007,. 10.1103/PhysRevLett.101.060403
-
J. Du, L. Hu, Y. Wang, J. Wu, M. Zhao, and D. Suter, Phys. Rev. Lett. 0031-9007 101, 060403 (2008). 10.1103/PhysRevLett.101.060403
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 060403
-
-
Du, J.1
Hu, L.2
Wang, Y.3
Wu, J.4
Zhao, M.5
Suter, D.6
-
9
-
-
0000246806
-
-
0010-3616,. 10.1007/BF02096616
-
G. Nenciu, Commun. Math. Phys. 0010-3616 152, 479 (1993). 10.1007/BF02096616
-
(1993)
Commun. Math. Phys.
, vol.152
, pp. 479
-
-
Nenciu, G.1
-
10
-
-
0033471912
-
-
0010-3616,. 10.1007/s002200050620
-
J. E. Avron and A. Elgart, Commun. Math. Phys. 0010-3616 203, 445 (1999). 10.1007/s002200050620
-
(1999)
Commun. Math. Phys.
, vol.203
, pp. 445
-
-
Avron, J.E.1
Elgart, A.2
-
12
-
-
36148972519
-
-
0022-2488,. 10.1063/1.2798382
-
S. Jansen, M. -B. Ruskai, and R. Seiler, J. Math. Phys. 0022-2488 48, 102111 (2007). 10.1063/1.2798382
-
(2007)
J. Math. Phys.
, vol.48
, pp. 102111
-
-
Jansen, S.1
Ruskai, M.-B.2
Seiler, R.3
-
15
-
-
38349169118
-
Adiabatic quantum computation is equivalent to standard quantum computation
-
DOI 10.1137/S0097539705447323
-
D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, SIAM J. Comput. 0097-5397 37, 166 (2007). 10.1137/S0097539705447323 (Pubitemid 351321992)
-
(2007)
SIAM Journal on Computing
, vol.37
, Issue.1
, pp. 166-194
-
-
Aharonov, D.1
Van Dam, W.2
Kempe, J.3
Landau, Z.4
Lloyd, S.5
Regev, O.6
-
17
-
-
33750165209
-
The complexity of the local hamiltonian problem
-
DOI 10.1137/S0097539704445226
-
J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 0097-5397 35, 1070 (2006). 10.1137/S0097539704445226 (Pubitemid 44599919)
-
(2006)
SIAM Journal on Computing
, vol.35
, Issue.5
, pp. 1070-1097
-
-
Kempe, J.1
Kitaev, A.2
Regev, O.3
-
19
-
-
34548080068
-
Simple proof of equivalence between adiabatic quantum computation and the circuit model
-
DOI 10.1103/PhysRevLett.99.070502
-
A. Mizel, D. A. Lidar, and M. Mitchell, Phys. Rev. Lett. 0031-9007 99, 070502 (2007). 10.1103/PhysRevLett.99.070502 (Pubitemid 47294601)
-
(2007)
Physical Review Letters
, vol.99
, Issue.7
, pp. 070502
-
-
Mizel, A.1
Lidar, D.A.2
Mitchell, M.3
-
21
-
-
4043106399
-
-
1050-2947,. 10.1103/PhysRevA.69.062302
-
J. I. Latorre and R. Orus, Phys. Rev. A 1050-2947 69, 062302 (2004). 10.1103/PhysRevA.69.062302
-
(2004)
Phys. Rev. A
, vol.69
, pp. 062302
-
-
Latorre, J.I.1
Orus, R.2
-
23
-
-
33947576067
-
Modeling an adiabatic quantum computer via an exact map to a gas of particles
-
DOI 10.1103/PhysRevLett.98.120503
-
A. M. Zagoskin, S. Savel'ev, and F. Nori, Phys. Rev. Lett. 0031-9007 98, 120503 (2007). 10.1103/PhysRevLett.98.120503 (Pubitemid 46481400)
-
(2007)
Physical Review Letters
, vol.98
, Issue.12
, pp. 120503
-
-
Zagoskin, A.M.1
Savel'Ev, S.2
Nori, F.3
-
24
-
-
33744964955
-
General error estimate for adiabatic quantum computing
-
DOI 10.1103/PhysRevA.73.062307
-
G. Schaller, S. Mostame, and R. Schützhold, Phys. Rev. A 1050-2947 73, 062307 (2006). 10.1103/PhysRevA.73.062307 (Pubitemid 43855962)
-
(2006)
Physical Review A - Atomic, Molecular, and Optical Physics
, vol.73
, Issue.6
, pp. 062307
-
-
Schaller, G.1
Mostame, S.2
Schutzhold, R.3
-
26
-
-
0003362033
-
Matrix analysis
-
Springer-Verlag, New York
-
R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics No. 169 (Springer-Verlag, New York, 1997).
-
(1997)
Graduate Texts in Mathematics
, vol.169
-
-
Bhatia, R.1
-
28
-
-
40949108845
-
-
1050-2947,. 10.1103/PhysRevA.77.032322
-
M. Mohseni, A. T. Rezakhani, and D. A. Lidar, Phys. Rev. A 1050-2947 77, 032322 (2008). 10.1103/PhysRevA.77.032322
-
(2008)
Phys. Rev. A
, vol.77
, pp. 032322
-
-
Mohseni, M.1
Rezakhani, A.T.2
Lidar, D.A.3
-
30
-
-
0002238196
-
-
0950-1207,. 10.1098/rspa.1990.0051
-
M. V. Berry, Proc. R. Soc. London, Ser. A 0950-1207 429, 61 (1990). 10.1098/rspa.1990.0051
-
(1990)
Proc. R. Soc. London, Ser. A
, vol.429
, pp. 61
-
-
Berry, M.V.1
-
31
-
-
0001357409
-
-
0003-3804,. 10.1016/0003-4916(89)90179-6
-
G. A. Hagedorn, Ann. Phys. 0003-3804 196, 278 (1989). 10.1016/0003-4916(89)90179-6
-
(1989)
Ann. Phys.
, vol.196
, pp. 278
-
-
Hagedorn, G.A.1
-
32
-
-
0009744553
-
-
0003-3804,. 10.1016/0003-4916(59)90082-X
-
A. Lenard, Ann. Phys. 0003-3804 6, 261 (1959). 10.1016/0003-4916(59) 90082-X
-
(1959)
Ann. Phys.
, vol.6
, pp. 261
-
-
Lenard, A.1
-
33
-
-
0008570465
-
-
0031-8914,. 10.1016/0031-8914(62)90109-X
-
L. M. Garrido and F. J. Sancho, Physica (Amsterdam) 0031-8914 28, 553 (1962). 10.1016/0031-8914(62)90109-X
-
(1962)
Physica (Amsterdam)
, vol.28
, pp. 553
-
-
Garrido, L.M.1
Sancho, F.J.2
-
34
-
-
0000183260
-
-
0010-3616,. 10.1007/BF01206948
-
G. Nenciu, Commun. Math. Phys. 0010-3616 82, 121 (1981). 10.1007/BF01206948
-
(1981)
Commun. Math. Phys.
, vol.82
, pp. 121
-
-
Nenciu, G.1
-
36
-
-
0345790160
-
-
0031-9007,. 10.1103/PhysRevLett.91.210401
-
H. L. Haselgrove, M. A. Nielsen, and T. J. Osborne, Phys. Rev. Lett. 0031-9007 91, 210401 (2003). 10.1103/PhysRevLett.91.210401
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 210401
-
-
Haselgrove, H.L.1
Nielsen, M.A.2
Osborne, T.J.3
-
37
-
-
33847378907
-
Improved gap estimates for simulating Quantum circuits by adiabatic evolution
-
DOI 10.1007/s11128-006-0045-y
-
P. Deift, M. -B. Ruskai, and W. Spitzer, Quantum Inf. Process. 1570-0755 6, 121 (2007). 10.1007/s11128-006-0045-y (Pubitemid 46347672)
-
(2007)
Quantum Information Processing
, vol.6
, Issue.2
, pp. 121-125
-
-
Deift, P.1
Ruskai, M.B.2
Spitzer, W.3
-
39
-
-
18444397177
-
-
1050-2947,. 10.1103/PhysRevA.71.012331
-
M. S. Sarandy and D. A. Lidar, Phys. Rev. A 1050-2947 71, 012331 (2005). 10.1103/PhysRevA.71.012331
-
(2005)
Phys. Rev. A
, vol.71
, pp. 012331
-
-
Sarandy, M.S.1
Lidar, D.A.2
-
40
-
-
29144522316
-
-
0031-9007,. 10.1103/PhysRevLett.95.250503
-
M. S. Sarandy and D. A. Lidar, Phys. Rev. Lett. 0031-9007 95, 250503 (2005). 10.1103/PhysRevLett.95.250503
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 250503
-
-
Sarandy, M.S.1
Lidar, D.A.2
-
41
-
-
27144548522
-
Adiabatic approximation for weakly open systems
-
DOI 10.1103/PhysRevA.72.022328, 022328
-
P. Thunström, J. Åberg, and E. Sjöqvist, Phys. Rev. A 1050-2947 72, 022328 (2005). 10.1103/PhysRevA.72.022328 (Pubitemid 41493155)
-
(2005)
Physical Review A - Atomic, Molecular, and Optical Physics
, vol.72
, Issue.2
, pp. 1-13
-
-
Thunstrm, P.1
Berg, J.2
Sjqvist, E.3
-
42
-
-
34547843619
-
-
0010-3616,. 10.1007/s00220-007-0299-y
-
A. Joye, Commun. Math. Phys. 0010-3616 275, 139 (2007). 10.1007/s00220-007-0299-y
-
(2007)
Commun. Math. Phys.
, vol.275
, pp. 139
-
-
Joye, A.1
-
43
-
-
0036146412
-
-
1050-2947,. 10.1103/PhysRevA.65.012322
-
A. M. Childs, E. Farhi, and J. Preskill, Phys. Rev. A 1050-2947 65, 012322 (2001). 10.1103/PhysRevA.65.012322
-
(2001)
Phys. Rev. A
, vol.65
, pp. 012322
-
-
Childs, A.M.1
Farhi, E.2
Preskill, J.3
-
44
-
-
18444410555
-
-
1050-2947,. 10.1103/PhysRevA.71.032330
-
J. Roland and N. J. Cerf, Phys. Rev. A 1050-2947 71, 032330 (2005). 10.1103/PhysRevA.71.032330
-
(2005)
Phys. Rev. A
, vol.71
, pp. 032330
-
-
Roland, J.1
Cerf, N.J.2
-
45
-
-
33751216859
-
Decoherence in a scalable adiabatic quantum computer
-
DOI 10.1103/PhysRevA.74.052330
-
S. Ashhab, J. R. Johansson, and F. Nori, Phys. Rev. A 1050-2947 74, 052330 (2006). 10.1103/PhysRevA.74.052330 (Pubitemid 44791113)
-
(2006)
Physical Review A - Atomic, Molecular, and Optical Physics
, vol.74
, Issue.5
, pp. 052330
-
-
Ashhab, S.1
Johansson, J.R.2
Nori, F.3
-
47
-
-
61549125360
-
-
1050-2947,. 10.1103/PhysRevA.79.022107
-
M. H. S. Amin, D. V. Averin, and J. A. Nesteroff, Phys. Rev. A 1050-2947 79, 022107 (2009). 10.1103/PhysRevA.79.022107
-
(2009)
Phys. Rev. A
, vol.79
, pp. 022107
-
-
Amin, M.H.S.1
Averin, D.V.2
Nesteroff, J.A.3
-
48
-
-
42549087705
-
Towards fault tolerant adiabatic quantum computation
-
DOI 10.1103/PhysRevLett.100.160506
-
D. A. Lidar, Phys. Rev. Lett. 0031-9007 100, 160506 (2008). 10.1103/PhysRevLett.100.160506 (Pubitemid 351590594)
-
(2008)
Physical Review Letters
, vol.100
, Issue.16
, pp. 160506
-
-
Lidar, D.A.1
-
49
-
-
33750968768
-
Error-correcting codes for adiabatic quantum computation
-
DOI 10.1103/PhysRevA.74.052322
-
S. P. Jordan, E. Farhi, and P. W. Shor, Phys. Rev. A 1050-2947 74, 052322 (2006). 10.1103/PhysRevA.74.052322 (Pubitemid 44749247)
-
(2006)
Physical Review A - Atomic, Molecular, and Optical Physics
, vol.74
, Issue.5
, pp. 052322
-
-
Jordan, S.P.1
Farhi, E.2
Shor, P.W.3
-
50
-
-
19644401362
-
-
0031-9007,. 10.1103/PhysRevLett.93.160408
-
K. -P. Marzlin and B. C. Sanders, Phys. Rev. Lett. 0031-9007 93, 160408 (2004). 10.1103/PhysRevLett.93.160408
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 160408
-
-
Marzlin, K.-P.1
Sanders, B.C.2
-
51
-
-
70350715677
-
-
Note that the g (2) factor present in Eq. [evaluated at N=1 and absent in Eq.] gives rise to a discrepancy between the two bounds, unless we set γ=1/14. This does not in fact impose a constraint on the family of Hamiltonians our proof applies to (recall Assumption 1), since in the application of Cauchy's theorem we are free to choose an arbitrarily small integration contour around the real-time axis. In spite of having thus fixed its value, we continue to write γ rather than 1/14, as there is no fundamental importance to this value; it is merely an outcome of our rather loose bounds, e.g., as in Eq..
-
Note that the g (2) factor present in Eq. [evaluated at N=1 and absent in Eq.] gives rise to a discrepancy between the two bounds, unless we set γ=1/14. This does not in fact impose a constraint on the family of Hamiltonians our proof applies to (recall Assumption 1), since in the application of Cauchy's theorem we are free to choose an arbitrarily small integration contour around the real-time axis. In spite of having thus fixed its value, we continue to write γ rather than 1/14, as there is no fundamental importance to this value; it is merely an outcome of our rather loose bounds, e.g., as in Eq..
-
-
-
-
52
-
-
70350725521
-
-
k with k=1. This is required in order to obtain a bound involving just a single power of A and of Β. Failing to do this allows for the possibility that the two bounds will not agree
-
k with k=1. This is required in order to obtain a bound involving just a single power of A and of Β. Failing to do this allows for the possibility that the two bounds will not agree.
-
-
-
-
53
-
-
69149086321
-
-
0031-9007,. 10.1103/PhysRevLett.103.080502
-
A. T. Rezakhani, W.-J. Kuo, A. Hamma, D. A. Lidar, and P. Zanardi, Phys. Rev. Lett. 0031-9007 103, 080502 (2009). 10.1103/PhysRevLett.103.080502
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 080502
-
-
Rezakhani, A.T.1
Kuo - W, J.2
Hamma, A.3
Lidar, D.A.4
Zanardi, P.5
-
54
-
-
70350740645
-
-
Note that σ (τ) may in general depend on n. One can see this through a simple example. Imagine a cylinder of gaseous particles with short-ranged interactions. Any particle will interact with all particles inside a sphere of radius rint -the range of the interaction-around it. If we add new particles to the cylinder, at some point (i.e., at some n) all the space inside the shell will be occupied (close packed); hence, the new particles cannot interact with the particle in the center. For such particles, the coupling strength of the interaction with the particle in the center is effectively zero. The other condition we mention, namely time-independence of the graph or lattice, is designed to exclude folding of the system lattice, for example, in the case of large polymer or protein molecules, as this would also potentially allow a dependence of σ (τ) on n.
-
Note that σ (τ) may in general depend on n. One can see this through a simple example. Imagine a cylinder of gaseous particles with short-ranged interactions. Any particle will interact with all particles inside a sphere of radius rint -the range of the interaction-around it. If we add new particles to the cylinder, at some point (i.e., at some n) all the space inside the shell will be occupied (close packed); hence, the new particles cannot interact with the particle in the center. For such particles, the coupling strength of the interaction with the particle in the center is effectively zero. The other condition we mention, namely time-independence of the graph or lattice, is designed to exclude folding of the system lattice, for example, in the case of large polymer or protein molecules, as this would also potentially allow a dependence of σ (τ) on n.
-
-
-
-
55
-
-
47049112942
-
-
1050-2947,. 10.1103/PhysRevA.78.012308
-
D. A. Lidar, P. Zanardi, and K. Khodjasteh, Phys. Rev. A 1050-2947 78, 012308 (2008). 10.1103/PhysRevA.78.012308
-
(2008)
Phys. Rev. A
, vol.78
, pp. 012308
-
-
Lidar, D.A.1
Zanardi, P.2
Khodjasteh, K.3
|