-
1
-
-
33847690144
-
-
For a review on the topic, see 10.1038/nmat1849
-
For a review on the topic, see A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007). 10.1038/nmat1849
-
(2007)
Nature Mater.
, vol.6
, pp. 183
-
-
Geim, A.K.1
Novoselov, K.S.2
-
3
-
-
36149007340
-
-
10.1103/PhysRev.71.622
-
P. R. Wallace, Phys. Rev. 71, 622 (1947). 10.1103/PhysRev.71.622
-
(1947)
Phys. Rev.
, vol.71
, pp. 622
-
-
Wallace, P.R.1
-
5
-
-
79051470774
-
-
10.1209/0295-5075/79/17004;
-
M. Titov, EPL 79, 17004 (2007) 10.1209/0295-5075/79/17004
-
(2007)
EPL
, vol.79
, pp. 17004
-
-
Titov, M.1
-
8
-
-
61949410737
-
-
10.1103/PhysRevLett.102.096801;
-
W. Yao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 102, 096801 (2009) 10.1103/PhysRevLett.102.096801
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 096801
-
-
Yao, W.1
Yang, S.A.2
Niu, Q.3
-
9
-
-
67649389846
-
-
10.1103/PhysRevB.79.195422
-
G. Tkachov and M. Hentschel, Phys. Rev. B 79, 195422 (2009). 10.1103/PhysRevB.79.195422
-
(2009)
Phys. Rev. B
, vol.79
, pp. 195422
-
-
Tkachov, G.1
Hentschel, M.2
-
10
-
-
33745011416
-
-
10.1140/epjb/e2006-00203-1
-
M. I. Katsnelson, Eur. Phys. J. B 51, 157 (2006). 10.1140/epjb/e2006- 00203-1
-
(2006)
Eur. Phys. J. B
, vol.51
, pp. 157
-
-
Katsnelson, M.I.1
-
11
-
-
33745247160
-
-
10.1103/PhysRevLett.96.246802
-
J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, Phys. Rev. Lett. 96, 246802 (2006). 10.1103/PhysRevLett.96.246802
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 246802
-
-
Tworzydło, J.1
Trauzettel, B.2
Titov, M.3
Rycerz, A.4
Beenakker, C.W.J.5
-
12
-
-
50049124294
-
-
For the numerical study of a system with zigzag boundary condition, not considered in Refs., see 10.1002/pssa.200778166
-
For the numerical study of a system with zigzag boundary condition, not considered in Refs., see A. Rycerz, Phys. Status Solidi A 205, 1281 (2008). 10.1002/pssa.200778166
-
(2008)
Phys. Status Solidi A
, vol.205
, pp. 1281
-
-
Rycerz, A.1
-
13
-
-
34548672547
-
-
10.1126/science.1144359
-
F. Miao, S. Wijeratne, Y. Zhang, U. C. Coscun, W. Bao, and C. N. Lau, Science 317, 1530 (2007). 10.1126/science.1144359
-
(2007)
Science
, vol.317
, pp. 1530
-
-
Miao, F.1
Wijeratne, S.2
Zhang, Y.3
Coscun, U.C.4
Bao, W.5
Lau, C.N.6
-
14
-
-
43749105786
-
-
10.1103/PhysRevLett.100.196802
-
R. Danneau, F. Wu, M. F. Craciun, S. Russo, M. Y. Tomi, J. Salmilehto, A. F. Morpurgo, and P. J. Hakonen, Phys. Rev. Lett. 100, 196802 (2008). 10.1103/PhysRevLett.100.196802
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 196802
-
-
Danneau, R.1
Wu, F.2
Craciun, M.F.3
Russo, S.4
Tomi, M.Y.5
Salmilehto, J.6
Morpurgo, A.F.7
Hakonen, P.J.8
-
15
-
-
49449091072
-
-
10.1038/nnano.2008.199
-
X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol. 3, 491 (2008). 10.1038/nnano.2008.199
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 491
-
-
Du, X.1
Skachko, I.2
Barker, A.3
Andrei, E.Y.4
-
18
-
-
61549088470
-
-
For a computer simulation of transport for the Hall-bar setup used in Ref., see 10.1103/PhysRevB.79.085410
-
For a computer simulation of transport for the Hall-bar setup used in Ref., see R. Golizadeh-Mojarad and S. Datta, Phys. Rev. B 79, 085410 (2009). 10.1103/PhysRevB.79.085410
-
(2009)
Phys. Rev. B
, vol.79
, pp. 085410
-
-
Golizadeh-Mojarad, R.1
Datta, S.2
-
19
-
-
50049105070
-
-
10.1103/PhysRevB.78.075417
-
M. I. Katsnelson and F. Guinea, Phys. Rev. B 78, 075417 (2008). 10.1103/PhysRevB.78.075417
-
(2008)
Phys. Rev. B
, vol.78
, pp. 075417
-
-
Katsnelson, M.I.1
Guinea, F.2
-
20
-
-
70350707680
-
-
arXiv:0806.2739 (unpublished).
-
M. Wimmer and K. Richter, arXiv:0806.2739 (unpublished).
-
-
-
Wimmer, M.1
Richter, K.2
-
21
-
-
46049101886
-
-
10.1103/PhysRevB.77.233408
-
E. B. Sonin, Phys. Rev. B 77, 233408 (2008). 10.1103/PhysRevB.77.233408
-
(2008)
Phys. Rev. B
, vol.77
, pp. 233408
-
-
Sonin, E.B.1
-
23
-
-
56549126981
-
-
Here we limit the analysis to a single valley. For a general discussion, see the review by 10.1103/RevModPhys.80.1337
-
Here we limit the analysis to a single valley. For a general discussion, see the review by C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008). 10.1103/RevModPhys.80.1337
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 1337
-
-
Beenakker, C.W.J.1
-
24
-
-
70350705890
-
-
The translational invariance along the y axis is satisfied for an infinitely wide strip or for periodic boundary conditions of Ref.. In case of a confined geometry that does not mix the valleys, one can use Ψ (x,y) = χθ (x) ei ky y + χ-θ (x) e-i ky y for the mode matching and find that Eq. 4 remains unchanged.
-
The translational invariance along the y axis is satisfied for an infinitely wide strip or for periodic boundary conditions of Ref.. In case of a confined geometry that does not mix the valleys, one can use Ψ (x,y) = χθ (x) ei ky y + χ-θ (x) e-i ky y for the mode matching and find that Eq. 4 remains unchanged.
-
-
-
-
25
-
-
34547557627
-
-
10.1103/PhysRevB.76.045433;
-
H. Schomerus, Phys. Rev. B 76, 045433 (2007) 10.1103/PhysRevB.76.045433
-
(2007)
Phys. Rev. B
, vol.76
, pp. 045433
-
-
Schomerus, H.1
-
26
-
-
35648998046
-
-
10.1103/PhysRevB.76.155433
-
Ya. M. Blanter and I. Martin, Phys. Rev. B 76, 155433 (2007). 10.1103/PhysRevB.76.155433
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155433
-
-
Blanter, Ya.M.1
Martin, I.2
-
27
-
-
70350741282
-
-
Zero-energy solution of the Dirac equation in two dimensions has the general form Ψ= [ΨA (x+iy), ΨB (x-iy)] T, where the spinor components ΨA and ΨB are holomorphic functions. For the strip geometry, infinite-mass boundary conditions (ΨA □y=0 = ΨB □y=0, ΨA □y=W =- ΨB □y=W) are satisfied after applying the transformation ΨA = ΨA [z (w)], ΨB = ΨB [z (w□)], with z (w) □x (u+iv) +iy (u+iv) an analytical function that turns the coordinate system (u,v) into (x,y). The case of antiperiodic bc is discussed in Sec. 3.
-
Zero-energy solution of the Dirac equation in two dimensions has the general form Ψ= [ΨA (x+iy), ΨB (x-iy)] T, where the spinor components ΨA and ΨB are holomorphic functions. For the strip geometry, infinite-mass boundary conditions (ΨA □y=0 = ΨB □y=0, ΨA □y=W =- ΨB □y=W) are satisfied after applying the transformation ΨA = ΨA [z (w)], ΨB = ΨB [z (w□)], with z (w) □x (u+iv) +iy (u+iv) an analytical function that turns the coordinate system (u,v) into (x,y). The case of antiperiodic bc is discussed in Sec. 3.
-
-
-
-
28
-
-
70350707677
-
-
In the special case of antiperiodic bc, s=8 for all the modes. For periodic bc considered in Ref., the lowest fully transmitted mode has only a fourfold (spin and valley) degeneracy.
-
In the special case of antiperiodic bc, s=8 for all the modes. For periodic bc considered in Ref., the lowest fully transmitted mode has only a fourfold (spin and valley) degeneracy.
-
-
-
-
29
-
-
0021477979
-
-
10.1016/0038-1098(84)90117-0
-
O. N. Dorokhov, Solid State Commun. 51, 381 (1984). 10.1016/0038-1098(84) 90117-0
-
(1984)
Solid State Commun.
, vol.51
, pp. 381
-
-
Dorokhov, O.N.1
-
31
-
-
45249104337
-
-
10.1103/PhysRevB.77.245413
-
P. Carmier and D. Ullmo, Phys. Rev. B 77, 245413 (2008). 10.1103/PhysRevB.77.245413
-
(2008)
Phys. Rev. B
, vol.77
, pp. 245413
-
-
Carmier, P.1
Ullmo, D.2
-
32
-
-
59949098337
-
-
10.1103/RevModPhys.81.109
-
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 10.1103/RevModPhys.81.109
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109
-
-
Castro Neto, A.H.1
Guinea, F.2
Peres, N.M.R.3
Novoselov, K.S.4
Geim, A.K.5
-
34
-
-
36849085879
-
-
10.1103/PhysRevB.76.235404
-
P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C. W. J. Beenakker, and A. F. Morpurgo, Phys. Rev. B 76, 235404 (2007). 10.1103/PhysRevB.76.235404
-
(2007)
Phys. Rev. B
, vol.76
, pp. 235404
-
-
Recher, P.1
Trauzettel, B.2
Rycerz, A.3
Blanter, Ya.M.4
Beenakker, C.W.J.5
Morpurgo, A.F.6
-
36
-
-
0001700211
-
-
10.1103/PhysRevB.58.4649
-
S. Souma and A. Suzuki, Phys. Rev. B 58, 4649 (1998). 10.1103/PhysRevB.58.4649
-
(1998)
Phys. Rev. B
, vol.58
, pp. 4649
-
-
Souma, S.1
Suzuki, A.2
-
37
-
-
65549168773
-
-
10.1103/PhysRevLett.102.146804
-
C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło, Phys. Rev. Lett. 102, 146804 (2009). 10.1103/PhysRevLett.102. 146804
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 146804
-
-
Beenakker, C.W.J.1
Sepkhanov, R.A.2
Akhmerov, A.R.3
Tworzydło, J.4
-
38
-
-
70350719289
-
-
We took ΦlI (r) = Hl (2) (Kr) + rl Hl (1) (Kr) for r> R2, Φl II (r) =a Cl (1) (kr) +b Cl (2) (kr) with Cl (1,2) given by Eq. 32 for R2 >r> R1, Φl III (r) = tl Hl (2) (Kr) for R1 >r, and solved the matching conditions ΦlI (R2) = Φl II (R2), Φl II (R1) = Φl III (R1), d ΦlI dr □ R2 = d Φl II dr □ R2, d Φl II dr □ R1 = d Φl III dr □ R1.
-
We took ΦlI (r) = Hl (2) (Kr) + rl Hl (1) (Kr) for r> R2, Φl II (r) =a Cl (1) (kr) +b Cl (2) (kr) with Cl (1,2) given by Eq. 32 for R2 >r> R1, Φl III (r) = tl Hl (2) (Kr) for R1 >r, and solved the matching conditions ΦlI (R2) = Φl II (R2), Φl II (R1) = Φl III (R1), d ΦlI dr □ R2 = d Φl II dr □ R2, d Φl II dr □ R1 = d Φl III dr □ R1.
-
-
-
-
39
-
-
70350705894
-
-
We use the Landauer formula G= (2 e2 /h) σ l=-∞ ∞ Tl, and F= σ l=-∞ ∞ Tl (1- Tl) / σ l=-∞ ∞ Tl. Note the twofold degeneracy Tl = T-l for l≠0.
-
We use the Landauer formula G= (2 e2 /h) σ l=-∞ ∞ Tl, and F= σ l=-∞ ∞ Tl (1- Tl) / σ l=-∞ ∞ Tl. Note the twofold degeneracy Tl = T-l for l≠0.
-
-
-
-
40
-
-
70350710099
-
-
The semiclassical conductance for nonrelativistic electrons in the Corbino disk is Gs-cl = (4 e2 /h) (l1 +1/2) with l1 =int [(k2 R12 +1/4) 1/2] (see Ref.). It leads to G□k R1 for k R1 □1.
-
The semiclassical conductance for nonrelativistic electrons in the Corbino disk is Gs-cl = (4 e2 /h) (l1 +1/2) with l1 =int [(k2 R12 +1/4) 1/2] (see Ref.). It leads to G□k R1 for k R1 □1.
-
-
-
-
41
-
-
0032303478
-
-
10.1006/spmi.1996.0273
-
R. P. Taylor, R. Newbury, A. S. Sachrajda, Y. Feng, P. T. Coleridge, M. Davies, and J. P. McCaffrey, Superlattices Microstruct. 24, 337 (1998). 10.1006/spmi.1996.0273
-
(1998)
Superlattices Microstruct.
, vol.24
, pp. 337
-
-
Taylor, R.P.1
Newbury, R.2
Sachrajda, A.S.3
Feng, Y.4
Coleridge, P.T.5
Davies, M.6
McCaffrey, J.P.7
-
42
-
-
70350716371
-
-
For a 2DEG and the limit of K□k, we find from Eq. 29 that Tl ≈64 (π2 K2 R1 R2) -1 □ Cl (1) (k R2) Cl (2) (k R1) - Cl (2) (k R2) Cl (1) (k R1) □-2, which vanishes as (1/K) 2.
-
For a 2DEG and the limit of K□k, we find from Eq. 29 that Tl ≈64 (π2 K2 R1 R2) -1 □ Cl (1) (k R2) Cl (2) (k R1) - Cl (2) (k R2) Cl (1) (k R1) □-2, which vanishes as (1/K) 2.
-
-
-
-
44
-
-
33746052437
-
-
10.1103/PhysRevB.74.041403;
-
V. V. Cheianov and V. I. Fal'ko, Phys. Rev. B 74, 041403 (R) (2006) 10.1103/PhysRevB.74.041403
-
(2006)
Phys. Rev. B
, vol.74
, pp. 041403
-
-
Cheianov, V.V.1
Fal'Ko, V.I.2
-
47
-
-
0001179625
-
-
10.1103/PhysRevB.44.8017
-
T. Ando, Phys. Rev. B 44, 8017 (1991). 10.1103/PhysRevB.44.8017
-
(1991)
Phys. Rev. B
, vol.44
, pp. 8017
-
-
Ando, T.1
-
48
-
-
70350710095
-
-
For the half-Corbino disk (Θ=π), we have fixed the width of the wide lead attached from the right [see Fig. 7] at W∞ =560a (corresponding to N∞ =213 propagating modes for μ∞ =τ/2). The inner radius is varied in the range R1 =30-150a (N1 =23-114 modes). The remaining parameters are the outer radius R2 =160a (the diameter 2 R2 is noticeably smaller than W∞ to model the bulk-lead regime) and the edge-atoms chemical potential μA =- μB =0.01τ. For the quantum dot with circular edges [see Fig. 7], we have fixed the lead radius at R1 =40a (N1 =30 for μ∞ =τ/2), the edge radius is varied in the range 243a< R2 <853a, and the staggered-potential amplitude outside the dot is varied in the range | μA,B | =0.1-0.8τ. We find that the results are insensitive to the confinement strength.
-
For the half-Corbino disk (Θ=π), we have fixed the width of the wide lead attached from the right [see Fig. 7] at W∞ =560a (corresponding to N∞ =213 propagating modes for μ∞ =τ/2). The inner radius is varied in the range R1 =30-150a (N1 =23-114 modes). The remaining parameters are the outer radius R2 =160a (the diameter 2 R2 is noticeably smaller than W∞ to model the bulk-lead regime) and the edge-atoms chemical potential μA =- μB =0.01τ. For the quantum dot with circular edges [see Fig. 7], we have fixed the lead radius at R1 =40a (N1 =30 for μ∞ =τ/2), the edge radius is varied in the range 243a< R2 <853a, and the staggered-potential amplitude outside the dot is varied in the range | μA,B | =0.1-0.8τ. We find that the results are insensitive to the confinement strength.
-
-
-
-
49
-
-
42349100001
-
-
10.1126/science.1154663
-
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008). 10.1126/science.1154663
-
(2008)
Science
, vol.320
, pp. 356
-
-
Ponomarenko, L.A.1
Schedin, F.2
Katsnelson, M.I.3
Yang, R.4
Hill, E.W.5
Novoselov, K.S.6
Geim, A.K.7
-
50
-
-
61349127261
-
-
10.1103/PhysRevLett.102.056806
-
J. Wurm, A. Rycerz, I. Adagideli, M. Wimmer, K. Richter, and H. U. Baranger, Phys. Rev. Lett. 102, 056806 (2009). 10.1103/PhysRevLett.102.056806
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 056806
-
-
Wurm, J.1
Rycerz, A.2
Adagideli, I.3
Wimmer, M.4
Richter, K.5
Baranger, H.U.6
-
51
-
-
38949129139
-
-
10.1103/PhysRevLett.100.056802
-
F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008). 10.1103/PhysRevLett.100.056802
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 056802
-
-
Tikhonenko, F.V.1
Horsell, D.W.2
Gorbachev, R.V.3
Savchenko, A.K.4
-
52
-
-
70350714358
-
-
The chemical potential μj =0 in the undoped region (white areas in Fig. 9), except for the outermost edge atoms, where we put μj = μA,B, with μA =- μB =0.01-0.1τ. In the leads (shadow areas) μj = μ∞ =0.4τ, what corresponds to 60 propagating modes (for the lead width fixed at W=200a). The sample area length L is varied but kept equal to the width of undoped leads.
-
The chemical potential μj =0 in the undoped region (white areas in Fig. 9), except for the outermost edge atoms, where we put μj = μA,B, with μA =- μB =0.01-0.1τ. In the leads (shadow areas) μj = μ∞ =0.4τ, what corresponds to 60 propagating modes (for the lead width fixed at W=200a). The sample area length L is varied but kept equal to the width of undoped leads.
-
-
-
-
53
-
-
40049093097
-
-
10.1126/science.1150878;
-
X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008) 10.1126/science.1150878
-
(2008)
Science
, vol.319
, pp. 1229
-
-
Li, X.1
Wang, X.2
Zhang, L.3
Lee, S.4
Dai, H.5
-
54
-
-
34547334459
-
-
10.1103/PhysRevLett.98.206805;
-
M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007) 10.1103/PhysRevLett.98.206805
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 206805
-
-
Han, M.Y.1
Özyilmaz, B.2
Zhang, Y.3
Kim, P.4
-
55
-
-
36048991480
-
-
10.1016/j.physe.2007.06.020
-
Zh. Chen, Y.-M. Lin, M. J. Rooks, and P. Avouris, Physica E 40, 228 (2007). 10.1016/j.physe.2007.06.020
-
(2007)
Physica e
, vol.40
, pp. 228
-
-
Chen, Zh.1
Lin, Y.-M.2
Rooks, M.J.3
Avouris, P.4
-
57
-
-
43049091887
-
-
10.1103/PhysRevLett.100.177207
-
M. Wimmer, I. Adagideli, S. Berber, D. Tomanek, and K. Richter, Phys. Rev. Lett. 100, 177207 (2008). 10.1103/PhysRevLett.100.177207
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 177207
-
-
Wimmer, M.1
Adagideli, I.2
Berber, S.3
Tomanek, D.4
Richter, K.5
-
59
-
-
65349084923
-
-
10.1103/PhysRevB.79.115131
-
D. Rainis, F. Taddei, F. Dolcini, M. Polini, and R. Fazio, Phys. Rev. B 79, 115131 (2009). 10.1103/PhysRevB.79.115131
-
(2009)
Phys. Rev. B
, vol.79
, pp. 115131
-
-
Rainis, D.1
Taddei, F.2
Dolcini, F.3
Polini, M.4
Fazio, R.5
-
60
-
-
70350736039
-
-
We suppose the current density j= σ0 E=- σ0 □φ, where φ (x,y) is an electrostatic potential. The conductance G=I/ (φx=L/2 - φx=-L/2) is found by the analytical integration of the current passing the vertical symmetry axis of the system (x=0).
-
We suppose the current density j= σ0 E=- σ0 □φ, where φ (x,y) is an electrostatic potential. The conductance G=I/ (φx=L/2 - φx=-L/2) is found by the analytical integration of the current passing the vertical symmetry axis of the system (x=0).
-
-
-
-
61
-
-
70350712209
-
-
Reference reports an exponential decay for a similar geometry, but it considers a far different leads arrangement, for which the current is effectively flowing along a narrow insulating nanoribbon in graphene.
-
Reference reports an exponential decay for a similar geometry, but it considers a far different leads arrangement, for which the current is effectively flowing along a narrow insulating nanoribbon in graphene.
-
-
-
-
62
-
-
70350726275
-
-
Equation 8 with s=4 and Λ=Λ (W/L) given by Eq. 49.
-
Equation 8 with s=4 and Λ=Λ (W/L) given by Eq. 49.
-
-
-
-
63
-
-
70350743057
-
-
Parameters of the nanoribbonlike system studied numerically are L=963a, W∞ =560a, μ∞ =τ/2, and | μA,B | =0.01τ. The narrow-lead width is varied in the range W/a=40-300.
-
Parameters of the nanoribbonlike system studied numerically are L=963a, W∞ =560a, μ∞ =τ/2, and | μA,B | =0.01τ. The narrow-lead width is varied in the range W/a=40-300.
-
-
-
-
64
-
-
70350702714
-
-
We use Hν (1) (ρ) ≈ 2/ (πρ) exp [i (ρ-νπ/2- π/4)] for ρ□1, and Hν (2) (ρ) = [Hν (1) (ρ)] □.
-
We use Hν (1) (ρ) ≈ 2/ (πρ) exp [i (ρ-νπ/2- π/4)] for ρ□1, and Hν (2) (ρ) = [Hν (1) (ρ)] □.
-
-
-
|