-
2
-
-
0001240702
-
2D model field theories at finite temperature and density
-
M. Shifman Ed, World Scientific, arXiv:hep-th/0008175
-
V. Schön, M. Thies, 2D model field theories at finite temperature and density, in: M. Shifman (Ed.), At the Frontier of Particle Physics, vol. 3, World Scientific. [arXiv:hep-th/0008175].
-
At the Frontier of Particle Physics
, vol.3
-
-
Schön, V.1
Thies, M.2
-
3
-
-
33749411965
-
-
[arXiv:hep-th/0601049].
-
Thies M. J. Phys. A 39 (2006) 12707 [arXiv:hep-th/0601049].
-
(2006)
J. Phys. A
, vol.39
, pp. 12707
-
-
Thies, M.1
-
4
-
-
44149085185
-
-
[arXiv:0803.1501 [hep-th]]
-
Basar G., and Dunne G.V. Phys. Rev. Lett. 100 (2008) 200404 [arXiv:0803.1501 [hep-th]]
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 200404
-
-
Basar, G.1
Dunne, G.V.2
-
5
-
-
51849090130
-
-
[arXiv:0806.2659 [hep-th]]
-
Basar G., and Dunne G.V. Phys. Rev. D 78 (2008) 065022 [arXiv:0806.2659 [hep-th]]
-
(2008)
Phys. Rev. D
, vol.78
, pp. 065022
-
-
Basar, G.1
Dunne, G.V.2
-
6
-
-
70350708546
-
-
2 model. [arXiv:0903.1868 [hep-th]].
-
2 model. [arXiv:0903.1868 [hep-th]].
-
-
-
-
11
-
-
70350714828
-
Generalized supersymmetric quantum mechanics and reflectionless fermion bags in 1 + 1 dimensions
-
Olshanetsky M., et al. (Ed), World Scientific hep-th/0109045
-
Feinberg J., and Zee A. Generalized supersymmetric quantum mechanics and reflectionless fermion bags in 1 + 1 dimensions. In: Olshanetsky M., et al. (Ed). Multiple Facets of Quantization and Supersymmetry (2002), World Scientific hep-th/0109045
-
(2002)
Multiple Facets of Quantization and Supersymmetry
-
-
Feinberg, J.1
Zee, A.2
-
12
-
-
0347662396
-
-
[arXiv:hep-th/0305240]
-
Feinberg J. Ann. Phys. 309 (2004) 166 [arXiv:hep-th/0305240]
-
(2004)
Ann. Phys.
, vol.309
, pp. 166
-
-
Feinberg, J.1
-
18
-
-
0002358478
-
-
[JETP Lett. 33 (1981) 4]
-
Pis. Zh. Eksp. Teor. Fiz. 33 (1981) 6 [JETP Lett. 33 (1981) 4]
-
(1981)
Pis. Zh. Eksp. Teor. Fiz.
, vol.33
, pp. 6
-
-
-
35
-
-
0001271676
-
-
[Sov. Phys. JETP 7 (1958) 505]
-
Gorkov L.P. Zh. Eksp. Teor. Fiz. 34 (1958) 735 [Sov. Phys. JETP 7 (1958) 505]
-
(1958)
Zh. Eksp. Teor. Fiz.
, vol.34
, pp. 735
-
-
Gorkov, L.P.1
-
37
-
-
0004225382
-
-
World Scientific, Singapore
-
Das A. Integrable Models (1989), World Scientific, Singapore
-
(1989)
Integrable Models
-
-
Das, A.1
-
48
-
-
0030080124
-
-
[arXiv:hep-th/9601116]
-
Plyushchay M.S. Ann. Phys. 245 (1996) 339 [arXiv:hep-th/9601116]
-
(1996)
Ann. Phys.
, vol.245
, pp. 339
-
-
Plyushchay, M.S.1
-
49
-
-
0034692393
-
-
[arXiv:hep-th/9903130]
-
Int. J. Mod. Phys. A 15 (2000) 3679 [arXiv:hep-th/9903130]
-
(2000)
Int. J. Mod. Phys. A
, vol.15
, pp. 3679
-
-
-
51
-
-
70350708544
-
-
[arXiv:0706.1114 [hep-th]]
-
J. Phys. A 40 (2007) 14403 [arXiv:0706.1114 [hep-th]]
-
(2007)
J. Phys. A
, vol.40
, pp. 14403
-
-
-
69
-
-
0036679585
-
-
[arXiv:hep-th/0204224]
-
Dunne G.V., and Shifman M. Ann. Phys. 299 (2002) 143 [arXiv:hep-th/0204224]
-
(2002)
Ann. Phys.
, vol.299
, pp. 143
-
-
Dunne, G.V.1
Shifman, M.2
-
70
-
-
8744256475
-
-
[arXiv:quant-ph/0401163]
-
Faux M., and Spector D. J. Phys. A 37 (2004) 10397 [arXiv:quant-ph/0401163]
-
(2004)
J. Phys. A
, vol.37
, pp. 10397
-
-
Faux, M.1
Spector, D.2
-
77
-
-
70350724958
-
-
[arXiv:hep-lat/0612010]
-
Bringoltz B. JHEP 0703 (2007) 016 [arXiv:hep-lat/0612010]
-
(2007)
JHEP
, vol.703
, pp. 016
-
-
Bringoltz, B.1
-
78
-
-
70350729193
-
-
[arXiv:0901.4035 [hep-lat]].
-
[arXiv:0901.4035 [hep-lat]].
-
-
-
-
79
-
-
63249109990
-
-
[arXiv:0811.2400 [hep-ph]]
-
Nickel D., and Buballa M. Phys. Rev. D 79 (2009) 054009 [arXiv:0811.2400 [hep-ph]]
-
(2009)
Phys. Rev. D
, vol.79
, pp. 054009
-
-
Nickel, D.1
Buballa, M.2
-
80
-
-
70350722165
-
-
D. Nickel. [arXiv:0902.1778 [hep-ph]].
-
D. Nickel. [arXiv:0902.1778 [hep-ph]].
-
-
-
-
84
-
-
33847788335
-
-
[arXiv:hep-th/0610087]
-
Basu A., and Maharana A. Phys. Rev. D 75 (2007) 065005 [arXiv:hep-th/0610087]
-
(2007)
Phys. Rev. D
, vol.75
, pp. 065005
-
-
Basu, A.1
Maharana, A.2
-
86
-
-
70350741774
-
-
For details and proof see
-
For details and proof see Ref. [31].
-
, vol.31
-
-
Ref1
-
88
-
-
70350724957
-
-
Hidden nonlinear supersymmetry of the reflectionless Pöschl-Teller system can be explained in terms of the Aharonov-Bohm effect for non-relativisitc particle on AdS2, see Ref, 55
-
Hidden nonlinear supersymmetry of the reflectionless Pöschl-Teller system can be explained in terms of the Aharonov-Bohm effect for non-relativisitc particle on AdS(2), see Ref. [55].
-
-
-
-
89
-
-
70350734043
-
-
We note that the spectrum also reveals a symmetry E (2 K′, θ) →, E (2 K′, θ, and E (π, θ) →, E (π, θ) in the non-periodic case, This symmetry is not independent, but is a consequence of the duality relation and the invariance of the spectrum under reflection with respect to θ, 4 K′ [θ, 2 π, The latter, in turn, follows from invariance of the Hamiltonian 4.38, 4.7, under the change θ →, θ and its quasi-invariance [invariance] under the shift for the period 8 K′ [4 π
-
′ [4 π].
-
-
-
|