-
1
-
-
35348877424
-
Why we search: Visualizing and predicting user behavior
-
E. Adar, D. S. Weld, B. N. Bershad, and S. S. Gribble. Why we search: visualizing and predicting user behavior. In WWW, pages 161-170, 2007.
-
(2007)
, pp. 161-170
-
-
Adar, E.1
Weld, D.S.2
Bershad, B.N.3
Gribble, S.S.4
-
2
-
-
33750341480
-
Improving web search ranking by incorporating user behavior information
-
E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user behavior information. In SIGIR, pages 19-26, 2006.
-
(2006)
SIGIR
, pp. 19-26
-
-
Agichtein, E.1
Brill, E.2
Dumais, S.3
-
3
-
-
33749571437
-
Identifying "best bet" web search results by mining past user behavior
-
E. Agichtein and Z. Zheng. Identifying "best bet" web search results by mining past user behavior. In KDD, pages 902-908, 2006.
-
(2006)
KDD
, pp. 902-908
-
-
Agichtein, E.1
Zheng, Z.2
-
4
-
-
34548710710
-
Challenges in distributed information retrieval
-
R. Baeza-Yates, C. Castillo, F. Junqueira, V. Plachouras, and F. Silvestri. Challenges in distributed information retrieval. In ICDE, pages 6-20, 2007.
-
(2007)
ICDE
, pp. 6-20
-
-
Baeza-Yates, R.1
Castillo, C.2
Junqueira, F.3
Plachouras, V.4
Silvestri, F.5
-
5
-
-
57349172643
-
Mining the search trails of surfing crowds: Identifying relevant websites from user activity
-
M. Bilenko and R. W. White. Mining the search trails of surfing crowds: Identifying relevant websites from user activity. In WWW, pages 51-60, 2008.
-
(2008)
, pp. 51-60
-
-
Bilenko, M.1
White, R.W.2
-
6
-
-
70349237629
-
The query-flow graph: Model and applications
-
P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S. Vigna. The query-flow graph: Model and applications. In CIKM, pages 609-618, 2008.
-
(2008)
CIKM
, pp. 609-618
-
-
Boldi, P.1
Bonchi, F.2
Castillo, C.3
Donato, D.4
Gionis, A.5
Vigna, S.6
-
8
-
-
70350635329
-
Efficient PageRank approximation via graph aggregation
-
A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen. Efficient PageRank approximation via graph aggregation. In WWW, pages 484-485, 2004.
-
(2004)
, pp. 484-485
-
-
Broder, A.Z.1
Lempel, R.2
Maghoul, F.3
Pedersen, J.4
-
10
-
-
84885604032
-
Relevance weighting for query independent evidence
-
N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor. Relevance weighting for query independent evidence. In SIGIR, pages 416-423, 2005.
-
(2005)
SIGIR
, pp. 416-423
-
-
Craswell, N.1
Robertson, S.2
Zaragoza, H.3
Taylor, M.4
-
11
-
-
85030321143
-
MapReduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI, pages 137-150, 2004.
-
(2004)
OSDI
, pp. 137-150
-
-
Dean, J.1
Ghemawat, S.2
-
12
-
-
67650086764
-
Understanding the relationship between searchers' queries and information goals
-
D. Downey, D. Liebling, and S. Dumais. Understanding the relationship between searchers' queries and information goals. In CIKM, pages 449-458, 2008.
-
(2008)
CIKM
, pp. 449-458
-
-
Downey, D.1
Liebling, D.2
Dumais, S.3
-
14
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5):1189-1232, 2001.
-
(2001)
The Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
15
-
-
70350654191
-
-
Online, 2008
-
Google. We know the web was big. Online, 2008. http://googleblog. blogspot.com/2008/07/we-knew-web-was-big.html.
-
Google. We know the web was big
-
-
-
17
-
-
34248146053
-
Accessing the deep Web
-
B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the deep Web. Communications of the ACM, 50(5):94-101, 2007.
-
(2007)
Communications of the ACM
, vol.50
, Issue.5
, pp. 94-101
-
-
He, B.1
Patel, M.2
Zhang, Z.3
Chang, K.C.-C.4
-
18
-
-
0033645041
-
IR evaluation methods for retrieving highly relevant documents
-
K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In SIGIR, pages 41-48, 2000.
-
(2000)
SIGIR
, pp. 41-48
-
-
Järvelin, K.1
Kekäläinen, J.2
-
19
-
-
1842637192
-
Cumulated gain-based evaluation of IR techniques
-
K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst., 20(4):422-446, 2002.
-
(2002)
ACM Trans. Inf. Syst
, vol.20
, Issue.4
, pp. 422-446
-
-
Järvelin, K.1
Kekäläinen, J.2
-
20
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
T. Joachims. Optimizing search engines using clickthrough data. In KDD, pages 133-142, 2002.
-
(2002)
KDD
, pp. 133-142
-
-
Joachims, T.1
-
21
-
-
84885665252
-
Accurately interpreting clickthrough data as implicit feedback
-
T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit feedback. In SIGIR, pages 154-161, 2005.
-
(2005)
SIGIR
, pp. 154-161
-
-
Joachims, T.1
Granka, L.2
Pan, B.3
Hembrooke, H.4
Gay, G.5
-
22
-
-
0012435995
-
A probabilistic model of information retrieval: Development and comparative experiments (parts 1 and 2)
-
K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of information retrieval: Development and comparative experiments (parts 1 and 2). Information Processing and Management, 36(6):779-840, 2000.
-
(2000)
Information Processing and Management
, vol.36
, Issue.6
, pp. 779-840
-
-
Jones, K.S.1
Walker, S.2
Robertson, S.E.3
-
23
-
-
4243148480
-
Authoritative sources in a hyperlinked environment
-
J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5):604-632, 1999.
-
(1999)
Journal of the ACM
, vol.46
, Issue.5
, pp. 604-632
-
-
Kleinberg, J.1
-
25
-
-
57549108344
-
Learning query intent from regularized click graphs
-
X. Li, Y.-Y. Wang, and A. Acero. Learning query intent from regularized click graphs. In SIGIR, pages 339-346, 2008.
-
(2008)
SIGIR
, pp. 339-346
-
-
Li, X.1
Wang, Y.-Y.2
Acero, A.3
-
26
-
-
57349156602
-
-
Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. BrowseRank: Letting web users vote for page importance. In SIGIR, pages 451-458, 2008.
-
Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li. BrowseRank: Letting web users vote for page importance. In SIGIR, pages 451-458, 2008.
-
-
-
-
27
-
-
34250684611
-
A uniform approach to accelerated PageRank computation
-
F. McSherry. A uniform approach to accelerated PageRank computation. In WWW, pages 575-582, 2005.
-
(2005)
, pp. 575-582
-
-
McSherry, F.1
-
28
-
-
42549123260
-
Ranking web sites with real user traffic
-
M. R. Meiss, F. Menczer, S. Fortunato, A. Flammini, and A. Vespignani. Ranking web sites with real user traffic. In WSDM, pages 65-76, 2008.
-
(2008)
WSDM
, pp. 65-76
-
-
Meiss, M.R.1
Menczer, F.2
Fortunato, S.3
Flammini, A.4
Vespignani, A.5
-
31
-
-
57349141405
-
Recrawl scheduling based on information longevity
-
C. Olston and S. Pandey. Recrawl scheduling based on information longevity. In WWW, pages 437-446, 2008.
-
(2008)
, pp. 437-446
-
-
Olston, C.1
Pandey, S.2
-
32
-
-
0003780986
-
The PageRank Citation Ranking: Bringing Order to The web
-
Technical Report, Stanford University
-
L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing Order to The web. Technical Report, Stanford University, 1998.
-
(1998)
-
-
Page, L.1
Brin, S.2
Motwani, R.3
Winograd, T.4
-
33
-
-
63449107122
-
Predictive user click models based on click-through history
-
B. Piwowarski and H. Zaragoza. Predictive user click models based on click-through history. In CIKM, pages 175-182, 2007.
-
(2007)
CIKM
, pp. 175-182
-
-
Piwowarski, B.1
Zaragoza, H.2
-
34
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850, 1971.
-
(1971)
Journal of the American Statistical Association
, vol.66
, Issue.336
, pp. 846-850
-
-
Rand, W.M.1
-
35
-
-
19944362539
-
Understanding user goals in web search
-
D. E. Rose and D. Levinson. Understanding user goals in web search. In WWW, pages 13-19, 2004.
-
(2004)
, pp. 13-19
-
-
Rose, D.E.1
Levinson, D.2
-
36
-
-
3042687811
-
Analysis of a very large web search engine query log
-
C. Silverstein, H. Marais, M. Henzinger, and M. Moricz. Analysis of a very large web search engine query log. ACM SIGIR Forum, 33(1):6-12, 1999.
-
(1999)
ACM SIGIR Forum
, vol.33
, Issue.1
, pp. 6-12
-
-
Silverstein, C.1
Marais, H.2
Henzinger, M.3
Moricz, M.4
-
37
-
-
33749567020
-
Mining long-term search history to improve search accuracy
-
B. Tan, X. Shen, and C. Zhai. Mining long-term search history to improve search accuracy. In KDD, pages 718-723, 2006.
-
(2006)
KDD
, pp. 718-723
-
-
Tan, B.1
Shen, X.2
Zhai, C.3
-
38
-
-
47249148884
-
Leveraging popular destinations to enhance web search interaction
-
R. W. White, M. Bilenko, and S. Cucerzan. Leveraging popular destinations to enhance web search interaction. ACM Trans. Web, 2(3):1-30, 2008.
-
(2008)
ACM Trans. Web
, vol.2
, Issue.3
, pp. 1-30
-
-
White, R.W.1
Bilenko, M.2
Cucerzan, S.3
-
39
-
-
35348927568
-
Investigating behaviorial variability in web search
-
R. W. White and S. M. Drucker. Investigating behaviorial variability in web search. In WWW, pages 21-30, 2007.
-
(2007)
, pp. 21-30
-
-
White, R.W.1
Drucker, S.M.2
|