-
1
-
-
34249862179
-
A statistical model for undecidable viral detection
-
Filiol E., Josse S.: A statistical model for undecidable viral detection. J. Comput. Virol. 3, 65-74 (2007).
-
(2007)
J. Comput. Virol.
, vol.3
, pp. 65-74
-
-
Filiol, E.1
Josse, S.2
-
2
-
-
33748978409
-
Malware pattern scanning schemes secure against black-box analysis
-
Filiol E.: Malware pattern scanning schemes secure against black-box analysis. J. Comput. Virol. 2, 35-50 (2006).
-
(2006)
J. Comput. Virol.
, vol.2
, pp. 35-50
-
-
Filiol, E.1
-
4
-
-
0034838197
-
Data mining methods for detection of new malicious executables
-
Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data mining methods for detection of new malicious executables. In: Proceedings of the IEEE Symposium on Security and Privacy, 178-184 (2001).
-
(2001)
Proceedings of the IEEE Symposium on Security and Privacy
, pp. 178-184
-
-
Schultz, M.1
Eskin, E.2
Zadok, E.3
Stolfo, S.4
-
5
-
-
18844362133
-
N-gram based detection of new malicious code
-
Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: N-gram based detection of new malicious code. In: Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC'04) (2004).
-
(2004)
Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC'04)
-
-
Abou-Assaleh, T.1
Cercone, N.2
Keselj, V.3
Sweidan, R.4
-
8
-
-
34748865971
-
A feature selection and evaluation scheme for computer virus detection
-
Hong Kong
-
Henchiri, O., Japkowicz, N.: A feature selection and evaluation scheme for computer virus detection. In: Proceedings of ICDM-2006, pp. 891-895. Hong Kong (2006).
-
(2006)
Proceedings of ICDM-2006
, pp. 891-895
-
-
Henchiri, O.1
Japkowicz, N.2
-
9
-
-
33751168025
-
N-gram analysis for computer virus detection
-
Reddy D., Pujari A.: N-gram analysis for computer virus detection. J. Comput. Virol. 2, 231-239 (2006).
-
(2006)
J. Comput. Virol.
, vol.2
, pp. 231-239
-
-
Reddy, D.1
Pujari, A.2
-
13
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
Chawla N.V., Japkowicz N., Kotcz A.: Editorial: Special issue on learning from imbalanced data sets. SIGKDD Explor. Newsl. 6(1), 1-6 (2004).
-
(2004)
SIGKDD Explor. Newsl.
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
14
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz N., Stephen S.: The class imbalance problem: a systematic study. Intel. Data Anal. J. 6, 5 (2002).
-
(2002)
Intel. Data Anal. J.
, vol.6
, pp. 5
-
-
Japkowicz, N.1
Stephen, S.2
-
15
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intel. Res. (JAIR) 16, 321-357 (2002).
-
(2002)
J. Artif. Intel. Res. (JAIR)
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
16
-
-
0001924639
-
Neural network classification and unequal prior class probabilities
-
G. Orr, R.-R. Muller, and R. Caruana (Eds.), Heidelberg: Springer Lecture Notes in Computer Science State-of-the-Art Surveys
-
Lawrence S., Burns I., Back A.D., Tsoi A.C., Giles C.L.: Neural network classification and unequal prior class probabilities. In: Orr, G., Muller, R.-R., Caruana, R.(eds) Tricks of the Trade. Lecture Notes in Computer Science State-of-the-Art Surveys, pp. 299-314. Springer, Heidelberg (1998).
-
(1998)
Tricks of the Trade
, pp. 299-314
-
-
Lawrence, S.1
Burns, I.2
Back, A.D.3
Tsoi, A.C.4
Giles, C.L.5
-
17
-
-
33745787554
-
Using random forest to learn unbalanced data
-
Statistics Department, University of California at Berkeley
-
Chen, C., Liaw, A., Breiman, L.: Using random forest to learn unbalanced data. Technical Report 666, Statistics Department, University of California at Berkeley (2004).
-
(2004)
Technical Report 666
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
18
-
-
0003260442
-
Combining statistical learning with a knowledge-based approach-a case study in intensive care monitoring
-
Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach-a case study in intensive care monitoring. In: Proceedings of the International Conference of Machine Learning, pp. 268-277 (1999).
-
(1999)
Proceedings of the International Conference of Machine Learning
, pp. 268-277
-
-
Morik, K.1
Brockhausen, P.2
Joachims, T.3
-
19
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
Weiss G., Provost F.: Learning when training data are costly: The effect of class distribution on tree induction. J. Artif. Intel. Res. 19, 315-354 (2003).
-
(2003)
J. Artif. Intel. Res.
, vol.19
, pp. 315-354
-
-
Weiss, G.1
Provost, F.2
-
20
-
-
0016572913
-
A vector space model for automatic indexing
-
Salton G., Wong A., Yang C.S.: A vector space model for automatic indexing. Commun. ACM 18, 613-620 (1975).
-
(1975)
Commun. ACM
, vol.18
, pp. 613-620
-
-
Salton, G.1
Wong, A.2
Yang, C.S.3
-
21
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub T., Slonim D., Tamaya P., Huard C., Gaasenbeek M., Mesirov J., Coller H., Loh M., Downing J., Caligiuri M., Bloomfield C., Lander E.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537 (1999).
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.1
Slonim, D.2
Tamaya, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.6
Coller, H.7
Loh, M.8
Downing, J.9
Caligiuri, M.10
Bloomfield, C.11
Lander, E.12
-
25
-
-
0031269184
-
On the optimality of simple Bayesian classifier under zero-one loss
-
Domingos P., Pazzani M.: On the optimality of simple Bayesian classifier under zero-one loss. Mach. Learn. 29, 103-130 (1997).
-
(1997)
Mach. Learn.
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
26
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y., Schapire R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119-139 (1997).
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
27
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 955-974 (1998).
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, Issue.2
, pp. 955-974
-
-
Burges, C.J.C.1
-
28
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
Schölkopf, B., Burges, C., Smola, A. (eds.) MIT Press, Cambridge
-
Joachims, T.: Making large-scale support vector machine learning practical. Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge (1998).
-
(1998)
Advances in Kernel Methods: Support Vector Machines
-
-
Joachims, T.1
-
31
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
Kubat M., Holte R., Matwin S.: Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30, 195-215 (1998).
-
(1998)
Mach. Learn.
, vol.30
, pp. 195-215
-
-
Kubat, M.1
Holte, R.2
Matwin, S.3
-
32
-
-
33746882464
-
Malware phylogeny generation using permutations of code
-
Karim Md., Walenstein A., Lakhotia A., Parida L.: Malware phylogeny generation using permutations of code. J. Comput. Virol. 1, 13-23 (2005).
-
(2005)
J. Comput. Virol.
, vol.1
, pp. 13-23
-
-
Karim, M.1
Walenstein, A.2
Lakhotia, A.3
Parida, L.4
|