-
1
-
-
1642379397
-
Introduction to the special issue on meta-learning
-
Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-learning. Machine Learning 54(3), 187-193 (2004)
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 187-193
-
-
Giraud-Carrier, C.1
Vilalta, R.2
Brazdil, P.3
-
2
-
-
26944492773
-
Using meta-learning to support data-mining. Intern
-
Vilalta, R., Giraud-Carrier, C., Brazdil, P., Soares, C.: Using meta-learning to support data-mining. Intern. Journal of Computer Science Application I(31), 31-45 (2004)
-
(2004)
Journal of Computer Science Application I
, pp. 31-45
-
-
Vilalta, R.1
Giraud-Carrier, C.2
Brazdil, P.3
Soares, C.4
-
3
-
-
0006655017
-
-
Gama, J., Brazdil, P.: Characterization of classification algorithms. In: Pinto-Ferreira, C., Mamede, N.J. (eds.) EPIA 1995. LNCS, 990, pp. 189-200. Springer, Heidelberg (1995)
-
Gama, J., Brazdil, P.: Characterization of classification algorithms. In: Pinto-Ferreira, C., Mamede, N.J. (eds.) EPIA 1995. LNCS, vol. 990, pp. 189-200. Springer, Heidelberg (1995)
-
-
-
-
6
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Machine Learning 15, 201-221 (1994)
-
(1994)
Machine Learning
, vol.15
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
7
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533-536 (1986)
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
8
-
-
0037361994
-
Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
-
Brazdil, P., Soares, C., da Costa, J.: Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning 50(3), 251-277 (2003)
-
(2003)
Machine Learning
, vol.50
, Issue.3
, pp. 251-277
-
-
Brazdil, P.1
Soares, C.2
da Costa, J.3
-
9
-
-
1642280141
-
On data and algorithms - understanding inductive performance
-
Kalousis, A., Gama, J., Hilario, M.: On data and algorithms - understanding inductive performance. Machine Learning 54(3), 275-312 (2004)
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 275-312
-
-
Kalousis, A.1
Gama, J.2
Hilario, M.3
-
12
-
-
10244243684
-
Meta-learning approaches to selecting time series models
-
Prudêncio, R.B.C., Ludermir, T.B.: Meta-learning approaches to selecting time series models. Neurocomputing 61, 121-137 (2004)
-
(2004)
Neurocomputing
, vol.61
, pp. 121-137
-
-
Prudêncio, R.B.C.1
Ludermir, T.B.2
-
14
-
-
70350606977
-
-
Prudêncio, R.B.C., Ludermir, T.B.: Selective generation of training examples in active meta-learning. Intern. Journal of Hybrid Intelligent Systems 5, 59-70 (2008)
-
Prudêncio, R.B.C., Ludermir, T.B.: Selective generation of training examples in active meta-learning. Intern. Journal of Hybrid Intelligent Systems 5, 59-70 (2008)
-
-
-
-
15
-
-
0000873069
-
A method for the solution of certain non-linear problems in least squares
-
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly Journal of Applied Mathmatics II(2), 164-168 (1944)
-
(1944)
Quarterly Journal of Applied Mathmatics II
, pp. 164-168
-
-
Levenberg, K.1
-
16
-
-
0005691967
-
A set of neural network benchmark problems and benchmarking rules
-
Technical Report 21/94, Universitä Karlsruhe, Germany
-
Prechelt, L.: A set of neural network benchmark problems and benchmarking rules. Technical Report 21/94, Universitä Karlsruhe, Germany (1994)
-
(1994)
-
-
Prechelt, L.1
-
17
-
-
1642276856
-
A meta-learning approach to select the kernel width in support vector regression
-
Soares, C., Brazdil, P., Kuba, P.: A meta-learning approach to select the kernel width in support vector regression. Machine Learning 54(3), 195-209 (2004)
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 195-209
-
-
Soares, C.1
Brazdil, P.2
Kuba, P.3
-
18
-
-
0003463572
-
-
4th edn. Wiley, Chichester
-
Montgomery, D., Peck, E., Vining, G.: Introduction to Linear Regression Analysis, 4th edn. Wiley, Chichester (2006)
-
(2006)
Introduction to Linear Regression Analysis
-
-
Montgomery, D.1
Peck, E.2
Vining, G.3
-
19
-
-
1242352526
-
Selective sampling for nearest neighbor classifiers
-
Lindenbaum, M., Markovitch, S., Rusakov, D.: Selective sampling for nearest neighbor classifiers. Machine Learning 54, 125-152 (2004)
-
(2004)
Machine Learning
, vol.54
, pp. 125-152
-
-
Lindenbaum, M.1
Markovitch, S.2
Rusakov, D.3
|