-
2
-
-
0001623498
-
-
For a review, see 10.1016/S0370-1573(98)00015-5;
-
For a review, see H. Shi and A. Griffin, Phys. Rep. 304, 1 (1998) 10.1016/S0370-1573(98)00015-5
-
(1998)
Phys. Rep.
, vol.304
, pp. 1
-
-
Shi, H.1
Griffin, A.2
-
3
-
-
4043140121
-
-
10.1103/RevModPhys.76.599
-
J. O. Andersen, Rev. Mod. Phys. 76, 599 (2004). 10.1103/RevModPhys.76.599
-
(2004)
Rev. Mod. Phys.
, vol.76
, pp. 599
-
-
Andersen, J.O.1
-
6
-
-
5244359230
-
-
10.1103/PhysRev.116.489
-
N. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959). 10.1103/PhysRev.116.489
-
(1959)
Phys. Rev.
, vol.116
, pp. 489
-
-
Hugenholtz, N.1
Pines, D.2
-
15
-
-
0001154093
-
-
10.1103/PhysRevLett.78.1612
-
C. Castellani, C. Di Castro, F. Pistolesi, and G. C. Strinati, Phys. Rev. Lett. 78, 1612 (1997). 10.1103/PhysRevLett.78.1612
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1612
-
-
Castellani, C.1
Di Castro, C.2
Pistolesi, F.3
Strinati, G.C.4
-
16
-
-
1442263537
-
-
10.1103/PhysRevB.69.024513
-
F. Pistolesi, C. Castellani, C. Di Castro, and G. C. Strinati, Phys. Rev. B 69, 024513 (2004). 10.1103/PhysRevB.69.024513
-
(2004)
Phys. Rev. B
, vol.69
, pp. 024513
-
-
Pistolesi, F.1
Castellani, C.2
Di Castro, C.3
Strinati, G.C.4
-
17
-
-
40749109824
-
-
10.1103/PhysRevB.77.064504
-
C. Wetterich, Phys. Rev. B 77, 064504 (2008). 10.1103/PhysRevB.77.064504
-
(2008)
Phys. Rev. B
, vol.77
, pp. 064504
-
-
Wetterich, C.1
-
18
-
-
70350595263
-
-
10.1209/0295-5075/80/50007
-
N. Dupuis and K. Sengupta, EPL 80, 50007 (2007). 10.1209/0295-5075/80/ 50007
-
(2007)
EPL
, vol.80
, pp. 50007
-
-
Dupuis, N.1
Sengupta, K.2
-
20
-
-
67650503589
-
-
10.1103/PhysRevLett.102.190401
-
N. Dupuis, Phys. Rev. Lett. 102, 190401 (2009). 10.1103/PhysRevLett.102. 190401
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 190401
-
-
Dupuis, N.1
-
27
-
-
70349478711
-
-
10.1103/PhysRevE.80.030103
-
F. Benitez, J. Blaizot, H. Chaté, B. Delamotte, R. Méndez-Galain, and N. Wschebor, Phys. Rev. E 80, 030103 (R) (2009). 10.1103/PhysRevE.80.030103
-
(2009)
Phys. Rev. e
, vol.80
, pp. 030103
-
-
Benitez, F.1
Blaizot, J.2
Chaté, H.3
Delamotte, B.4
Méndez-Galain, R.5
Wschebor, N.6
-
28
-
-
0001745236
-
-
10.1103/PhysRevB.38.8739
-
P. B. Weichman, Phys. Rev. B 38, 8739 (1988). 10.1103/PhysRevB.38.8739
-
(1988)
Phys. Rev. B
, vol.38
, pp. 8739
-
-
Weichman, P.B.1
-
29
-
-
0003440273
-
-
See, for instance, 3rd ed. (Clarendon Press, Oxford
-
See, for instance, J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 3rd ed. (Clarendon Press, Oxford, 1996), Chap..
-
(1996)
Quantum Field Theory and Critical Phenomena
-
-
Zinn-Justin, J.1
-
31
-
-
0000949865
-
-
10.1142/S0217751X99001615
-
R. Anishetty, R. Basu, N. D. Hari Dass, and H. S. Sharatchandra, Int. J. Mod. Phys. A 14, 3467 (1999). 10.1142/S0217751X99001615
-
(1999)
Int. J. Mod. Phys. A
, vol.14
, pp. 3467
-
-
Anishetty, R.1
Basu, R.2
Hari Dass, N.D.3
Sharatchandra, H.S.4
-
33
-
-
17444441804
-
-
10.1103/PhysRevLett.92.027203
-
W. Zwerger, Phys. Rev. Lett. 92, 027203 (2004). 10.1103/PhysRevLett.92. 027203
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 027203
-
-
Zwerger, W.1
-
34
-
-
70350585869
-
-
That is, the invariance in the transformation ψ (r,τ) → eiα ψ (r,τ), ψ□ (r,τ) → e-iα ψ□ (r,τ). This transformation corresponds to a rotation of angle α of the two-component real field (ψ1, ψ2).
-
That is, the invariance in the transformation ψ (r,τ) → eiα ψ (r,τ), ψ□ (r,τ) → e-iα ψ□ (r,τ). This transformation corresponds to a rotation of angle α of the two-component real field (ψ1, ψ2).
-
-
-
-
37
-
-
70350609298
-
-
Note that in the weak-coupling limit where n0 □μ/g, kh = 2gm n0 □ 2mμ is roughly independent of g if the chemical potential (rather than the mean boson density n̄ □ n0) is fixed. We then find kG ∼ g1/ (3-d) (for d<3) as in the (d+1) -dimensional classical O(2) model.
-
Note that in the weak-coupling limit where n0 □μ/g, kh = 2gm n0 □ 2mμ is roughly independent of g if the chemical potential (rather than the mean boson density n̄ □ n0) is fixed. We then find kG ∼ g1/ (3-d) (for d<3) as in the (d+1) -dimensional classical O(2) model.
-
-
-
-
38
-
-
70350587863
-
-
Alternatively, one could write Γ ij (2) = (φi φj /2n) Γll + (δij - φi φj /2n) Γtt + tudinal (l) and transverse (t) fluctuations, with Γll = ΓA +2n ΓB, Γtt = ΓA, and Γlt = ΓC.
-
Alternatively, one could write Γ ij (2) = (φi φj /2n) Γll + (δij - φi φj /2n) Γtt + ∈ij Γlt in terms of longitudinal (l) and transverse (t) fluctuations, with Γll = ΓA +2n ΓB, Γtt = ΓA, and Γlt = ΓC.
-
-
-
-
39
-
-
0347220517
-
-
10.1016/0003-4916(64)90116-2
-
K. Huang and A. Klein, Ann. Phys. (N.Y.) 30, 203 (1964). 10.1016/0003-4916(64)90116-2
-
(1964)
Ann. Phys. (N.Y.)
, vol.30
, pp. 203
-
-
Huang, K.1
Klein, A.2
-
40
-
-
70350612266
-
-
Because of the infrared regulator R, the propagator Ḡ (p) =- Γ̄ (2) -1 (p) -R (p) entering the flow equations has a gap ck [Eq.] [while the propagator - Γ̄ (2) -1 (p) is gapless in agreement with Goldstone theorem]. This property ensures that the n -point vertex Γ̄ (n) (p1,..., pn) is a regular function of its arguments for | pi |, | ωi | /c□k.
-
Because of the infrared regulator R, the propagator Ḡ (p) =- Γ̄ (2) -1 (p) -R (p) entering the flow equations has a gap ck [Eq.] [while the propagator - Γ̄ (2) -1 (p) is gapless in agreement with Goldstone theorem]. This property ensures that the n -point vertex Γ̄ (n) (p1,..., pn) is a regular function of its arguments for | pi |, | ωi | /c□k.
-
-
-
-
44
-
-
0002101282
-
-
10.1016/0370-2693(93)90726-X
-
C. Wetterich, Phys. Lett. B 301, 90 (1993). 10.1016/0370-2693(93)90726-X
-
(1993)
Phys. Lett. B
, vol.301
, pp. 90
-
-
Wetterich, C.1
-
47
-
-
70350587864
-
-
λ also shows a weak maximum at k∼ kh.
-
λ also shows a weak maximum at k∼ kh.
-
-
-
-
49
-
-
0347120245
-
-
See, for instance, Pergamon, Oxford
-
See, for instance, E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics II (Pergamon, Oxford, 1980).
-
(1980)
Statistical Physics II
-
-
Lifshitz, E.M.1
Pitaevskii, L.P.2
-
50
-
-
48749111352
-
-
10.1103/PhysRevB.78.035127
-
A. Kreisel, F. Sauli, N. Hasselmann, and P. Kopietz, Phys. Rev. B 78, 035127 (2008). 10.1103/PhysRevB.78.035127
-
(2008)
Phys. Rev. B
, vol.78
, pp. 035127
-
-
Kreisel, A.1
Sauli, F.2
Hasselmann, N.3
Kopietz, P.4
-
52
-
-
70350579750
-
-
When the correlation function involves two operators with opposite signatures under time reversal, the spectral function is given by i times the real part of the retarded correlation function. All spectral functions in Eqs. satisfy Gα (p,z) = ∞ -∞ ∞ dω [Aα (p,ω) /z-ω], with z as an arbitrary complex frequency.
-
When the correlation function involves two operators with opposite signatures under time reversal, the spectral function is given by i times the real part of the retarded correlation function. All spectral functions in Eqs. satisfy Gα (p,z) = ∞ -∞ ∞ dω [Aα (p,ω) /z-ω], with z as an arbitrary complex frequency.
-
-
-
-
54
-
-
70350609299
-
-
arXiv:0807.2393.
-
e-print arXiv:0807.2393.
-
-
-
-
55
-
-
26344439240
-
-
10.1103/PhysRev.130.1605
-
E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 10.1103/PhysRev.130.1605
-
(1963)
Phys. Rev.
, vol.130
, pp. 1605
-
-
Lieb, E.H.1
Liniger, W.2
-
56
-
-
36149006296
-
-
10.1103/PhysRev.130.1616
-
E. H. Lieb, Phys. Rev. 130, 1616 (1963). 10.1103/PhysRev.130.1616
-
(1963)
Phys. Rev.
, vol.130
, pp. 1616
-
-
Lieb, E.H.1
-
57
-
-
0347744361
-
-
10.1016/S0370-2693(00)00748-6
-
D. Litim, Phys. Lett. B 486, 92 (2000). 10.1016/S0370-2693(00)00748-6
-
(2000)
Phys. Lett. B
, vol.486
, pp. 92
-
-
Litim, D.1
|