-
2
-
-
27144516706
-
-
10.1103/PhysRevLett.95.026801;
-
H. T. Man and A. F. Morpurgo, Phys. Rev. Lett. 95, 026801 (2005) 10.1103/PhysRevLett.95.026801
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 026801
-
-
Man, H.T.1
Morpurgo, A.F.2
-
3
-
-
34247882648
-
-
10.1103/PhysRevLett.98.186808
-
M. S. Purewal, B. H. Hong, A. Ravi, B. Chandra, J. Hone, and P. Kim, Phys. Rev. Lett. 98, 186808 (2007), and references therein. 10.1103/PhysRevLett. 98.186808
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 186808
-
-
Purewal, M.S.1
Hong, B.H.2
Ravi, A.3
Chandra, B.4
Hone, J.5
Kim, P.6
-
4
-
-
16344389359
-
-
10.1126/science.1107821;
-
O. M. Auslaender, H. Steinberg, A. Yacoby, Y. Tserkovnyak, B. I. Halperin, K. W. Baldwin, L. N. Pfeiffer, and K. W. West, Science 308, 88 (2005) 10.1126/science.1107821
-
(2005)
Science
, vol.308
, pp. 88
-
-
Auslaender, O.M.1
Steinberg, H.2
Yacoby, A.3
Tserkovnyak, Y.4
Halperin, B.I.5
Baldwin, K.W.6
Pfeiffer, L.N.7
West, K.W.8
-
5
-
-
47949086303
-
-
10.1103/PhysRevLett.101.036801
-
W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 101, 036801 (2008), and references therein. 10.1103/PhysRevLett.101.036801
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 036801
-
-
Hew, W.K.1
Thomas, K.J.2
Pepper, M.3
Farrer, I.4
Anderson, D.5
Jones, G.A.C.6
Ritchie, D.A.7
-
6
-
-
60149101976
-
-
10.1103/PhysRevLett.102.036804
-
Y.-F. Chen, T. Dirks, G. Al-Zoubi, N. O. Birge, and N. Mason, Phys. Rev. Lett. 102, 036804 (2009). 10.1103/PhysRevLett.102.036804
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 036804
-
-
Chen, Y.-F.1
Dirks, T.2
Al-Zoubi, G.3
Birge, N.O.4
Mason, N.5
-
9
-
-
26744461531
-
-
10.1103/PhysRevB.47.4631;
-
A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 4631 (1993) 10.1103/PhysRevB.47.4631
-
(1993)
Phys. Rev. B
, vol.47
, pp. 4631
-
-
Furusaki, A.1
Nagaosa, N.2
-
11
-
-
0030282820
-
-
10.1016/0038-1098(96)00505-4;
-
U. Weiss, Solid State Commun. 100, 281 (1996) 10.1016/0038-1098(96)00505- 4
-
(1996)
Solid State Commun.
, vol.100
, pp. 281
-
-
Weiss, U.1
-
13
-
-
0000885207
-
-
10.1103/PhysRevB.58.10761
-
R. Egger and H. Grabert, Phys. Rev. B 58, 10761 (1998). 10.1103/PhysRevB.58.10761
-
(1998)
Phys. Rev. B
, vol.58
, pp. 10761
-
-
Egger, R.1
Grabert, H.2
-
15
-
-
49649084935
-
-
10.1134/S1063782608080204
-
D. A. Bagrets, I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Semiconductors 42, 994 (2008). 10.1134/S1063782608080204
-
(2008)
Semiconductors
, vol.42
, pp. 994
-
-
Bagrets, D.A.1
Gornyi, I.V.2
Mirlin, A.D.3
Polyakov, D.G.4
-
17
-
-
33846976238
-
-
edited by H. Bouchiat Y. Gefen G. Montambaux, and J. Dalibard Elsevier, Amsterdam
-
I. V. Lerner and I. V. Yurkevich, in Nanophysics: Coherence and Transport, edited by, H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, and, J. Dalibard, (Elsevier, Amsterdam, 2005).
-
(2005)
Nanophysics: Coherence and Transport
-
-
Lerner, I.V.1
Yurkevich, I.V.2
Guéron, S.3
-
19
-
-
70350601458
-
-
In contrast to Ref., and also Refs., we construct our theory without the so-called "ghost modes."
-
In contrast to Ref., and also Refs., we construct our theory without the so-called "ghost modes."
-
-
-
-
20
-
-
35949022751
-
-
10.1103/RevModPhys.58.323;
-
J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986) 10.1103/RevModPhys.58.323
-
(1986)
Rev. Mod. Phys.
, vol.58
, pp. 323
-
-
Rammer, J.1
Smith, H.2
-
21
-
-
33644543153
-
-
edited by H. Bouchiat, Y. Gefen, S. Guéron, Elsevier, Amsterdam, J. Dalibard (G. Montambaux, and
-
A. Kamenev, in Nanophysics: Coherence and Transport, edited by, H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux, and, J. Dalibard, (Elsevier, Amsterdam, 2005).
-
(2005)
Nanophysics: Coherence and Transport
-
-
Kamenev, A.1
-
23
-
-
4244095446
-
-
10.1103/PhysRevB.60.2218
-
A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999). 10.1103/PhysRevB.60.2218
-
(1999)
Phys. Rev. B
, vol.60
, pp. 2218
-
-
Kamenev, A.1
Andreev, A.2
-
26
-
-
56349151754
-
-
10.1103/PhysRevB.78.205407
-
A. G. Yashenkin, I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 78, 205407 (2008). 10.1103/PhysRevB.78.205407
-
(2008)
Phys. Rev. B
, vol.78
, pp. 205407
-
-
Yashenkin, A.G.1
Gornyi, I.V.2
Mirlin, A.D.3
Polyakov, D.G.4
-
27
-
-
70350615383
-
-
The scattering rate γ includes the LL renormalization (Ref.) due to virtual (elastic) processes on energy scales between max { T,eU } and the ultraviolet cutoff.
-
The scattering rate γ includes the LL renormalization (Ref.) due to virtual (elastic) processes on energy scales between max { T,eU } and the ultraviolet cutoff.
-
-
-
-
28
-
-
70350579736
-
-
A complementary approach has been formulated for spinless electrons in Ref. in terms of "undressed" fermions, which gives the same result for K (ω).
-
A complementary approach has been formulated for spinless electrons in Ref. in terms of "undressed" fermions, which gives the same result for K (ω).
-
-
-
-
29
-
-
0000264032
-
-
10.1103/PhysRevLett.79.3490
-
H. Pothier, S. Guéron, N. O. Birge, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 79, 3490 (1997). 10.1103/PhysRevLett.79.3490
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 3490
-
-
Pothier, H.1
Guéron, S.2
Birge, N.O.3
Esteve, D.4
Devoret, M.H.5
-
32
-
-
33749685429
-
-
10.1063/1.593605
-
I. V. Krive, J. Low Temp. Phys. 24, 377 (1998). 10.1063/1.593605
-
(1998)
J. Low Temp. Phys.
, vol.24
, pp. 377
-
-
Krive, I.V.1
-
33
-
-
70350609275
-
-
In a finite-length LL with, e.g., α (x) ∝θ (x) θ (L-x), plasmons are backscattered off the noninteracting contacts. Inhomogeneities in the interaction strength induce the inelastic electron scattering (Ref.) as well. This type of inelastic relaxation follows directly from the kinetic equations [Eqs. 3 10] with the kernels [Eqs. 6 7] taken for the space-dependent α (x). In a different framework-by directly calculating the Keldysh Green's function-the relaxation of the electron distribution in a finite LL has also been found in Ref.. This mechanism of evolution of fε combines with the impurity-induced equilibration.
-
In a finite-length LL with, e.g., α (x) ∝θ (x) θ (L-x), plasmons are backscattered off the noninteracting contacts. Inhomogeneities in the interaction strength induce the inelastic electron scattering (Ref.) as well. This type of inelastic relaxation follows directly from the kinetic equations [Eqs. 3 10] with the kernels [Eqs. 6 7] taken for the space-dependent α (x). In a different framework-by directly calculating the Keldysh Green's function-the relaxation of the electron distribution in a finite LL has also been found in Ref.. This mechanism of evolution of fε combines with the impurity-induced equilibration.
-
-
-
|