메뉴 건너뛰기




Volumn , Issue , 2006, Pages 1222-1231

A k-means-like algorithm for k-medoids clustering and its performance

Author keywords

Clustering; K means; K medoids

Indexed keywords

CLUSTERING; CLUSTERING ANALYSIS; DISTANCE MATRICES; HOMOGENEOUS GROUP; K-MEANS; K-MEDOIDS; K-MEDOIDS CLUSTERING; PARTITIONING AROUND MEDOIDS;

EID: 70350527847     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (7)
  • 1
    • 0010415411 scopus 로고    scopus 로고
    • Spatial clustering methods in data mining: A survey
    • Miller. H. and Han. J. eds., Taylor & Francis
    • Han, J., Kamber, M. and Tung, A. (2001). Spatial clustering methods in data mining: A survey. In Miller. H., and Han. J., eds., Geographic Data Mining and Knowledge Discovery. Taylor & Francis.
    • (2001) Geographic Data Mining and Knowledge Discovery
    • Han, J.1    Kamber, M.2    Tung, A.3
  • 6
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for gaussian mixture learning
    • Vlassis, N. and Likas, A. (2002). A greedy EM algorithm for Gaussian mixture learning. Neural Processing Letters, 15(1), 77-87.
    • (2002) Neural Processing Letters , vol.15 , Issue.1 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 7
    • 84886900970 scopus 로고    scopus 로고
    • ftp://ftp.ics.uci.edupub, inachine-leaming-databases/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.