메뉴 건너뛰기




Volumn 57, Issue 11, 2009, Pages 4175-4181

Study of two error functions to approximate the Neyman-Pearson detector using supervised learning machines

Author keywords

Bayes optimal discriminant function; Learning machine; Minkowski error; Neural network; Neyman Pearson (NP) detector; Sum of squares error

Indexed keywords

BAYES OPTIMAL DISCRIMINANT FUNCTION; LEARNING MACHINE; MINKOWSKI ERROR; NEYMAN-PEARSON (NP) DETECTOR; SUM-OF-SQUARES ERROR;

EID: 70350514137     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2009.2025077     Document Type: Article
Times cited : (37)

References (36)
  • 1
    • 0000776754 scopus 로고
    • On the problem of the most efficient test of statistical hypotheses
    • Feb
    • J. Neyman and K. Pearson, "On the problem of the most efficient test of statistical hypotheses," Philosph. Trans. Roy. Soc. London A, Math. Phys. Sci., vol. 231, pp. 492-510, Feb. 1933.
    • (1933) Philosph. Trans. Roy. Soc. London A, Math. Phys. Sci , vol.231 , pp. 492-510
    • Neyman, J.1    Pearson, K.2
  • 2
    • 33645683984 scopus 로고    scopus 로고
    • Some theoretical aspects of water-marking detection
    • Jan
    • T. Furon, J. Josse, and S. le Squin, "Some theoretical aspects of water-marking detection," in Proc. SPIE, Jan. 2006, vol. 6072, pp. 553-564.
    • (2006) Proc. SPIE , vol.6072 , pp. 553-564
    • Furon, T.1    Josse, J.2    le Squin, S.3
  • 3
    • 17644412011 scopus 로고    scopus 로고
    • Maximum-Likelihood detection in DWT domain image watermarking using Laplacian modeling
    • Apr
    • T. Ng and H. Garg, "Maximum-Likelihood detection in DWT domain image watermarking using Laplacian modeling," IEEE Signal Process. Lett. vol. 12, pp. 285-288, Apr. 2005.
    • (2005) IEEE Signal Process. Lett , vol.12 , pp. 285-288
    • Ng, T.1    Garg, H.2
  • 4
    • 1942536160 scopus 로고    scopus 로고
    • A statistical-based sequential method for fast online detection of fault-induced voltage dips
    • Apr
    • I. Gu, N. Ernberg, E. Styvaktakis, and M. Bollen, "A statistical-based sequential method for fast online detection of fault-induced voltage dips," IEEE Trans. Power Del., vol. 19, pp. 497-504, Apr. 2004.
    • (2004) IEEE Trans. Power Del , vol.19 , pp. 497-504
    • Gu, I.1    Ernberg, N.2    Styvaktakis, E.3    Bollen, M.4
  • 5
    • 0037307090 scopus 로고    scopus 로고
    • Decentralized detection in sensor networks
    • Feb
    • J. Chamberland and V. Veeravalli, "Decentralized detection in sensor networks," IEEE Trans. Signal Process., vol. 51, no. 2, pp. 407-416, Feb. 2003.
    • (2003) IEEE Trans. Signal Process , vol.51 , Issue.2 , pp. 407-416
    • Chamberland, J.1    Veeravalli, V.2
  • 6
    • 0346605836 scopus 로고    scopus 로고
    • Statistical challenges in functional genomics
    • Feb
    • P. Sebastiani, E. Gussoni, I. Kohane, and M. Ramoni, "Statistical challenges in functional genomics," Stat. Sci., vol. 18, pp. 33-60, Feb. 2003.
    • (2003) Stat. Sci , vol.18 , pp. 33-60
    • Sebastiani, P.1    Gussoni, E.2    Kohane, I.3    Ramoni, M.4
  • 7
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Mar
    • S. Dudoit, J. Fridlyand, and T. Speed, "Comparison of discrimination methods for the classification of tumors using gene expression data," J. Amer. Stat. Assoc., vol. 97, pp. 77-87, Mar. 2002.
    • (2002) J. Amer. Stat. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 8
    • 33645718320 scopus 로고    scopus 로고
    • Neyman-Pearson detection of Gauss-Markov signals in noise: Closed-form error exponent and properties
    • Apr
    • Y. Sung, L. Tong, and H. Poor, "Neyman-Pearson detection of Gauss-Markov signals in noise: Closed-form error exponent and properties," IEEE Trans. Inf. Theory, vol. 52, pp. 1354-1365, Apr. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 1354-1365
    • Sung, Y.1    Tong, L.2    Poor, H.3
  • 11
    • 27744553952 scopus 로고    scopus 로고
    • A Neyman-Pearson approach to statistical learning
    • Nov
    • C. Scott and R. Nowak, "A Neyman-Pearson approach to statistical learning," IEEE Trans. Inf. Theory, vol. 51, pp. 3806-3819, Nov. 2005.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , pp. 3806-3819
    • Scott, C.1    Nowak, R.2
  • 12
    • 0029547752 scopus 로고
    • A comparison of criterion functions for a neural network applied to binary detection
    • Dec
    • D. Andina, J. Sanz-González, and J. Jiménez-Pajares, "A comparison of criterion functions for a neural network applied to binary detection," in Proc. IEEE Int. Conf. Neural Netw., Dec. 1995, vol. 1, pp. 492-495.
    • (1995) Proc. IEEE Int. Conf. Neural Netw , vol.1 , pp. 492-495
    • Andina, D.1    Sanz-González, J.2    Jiménez-Pajares, J.3
  • 14
    • 0032670639 scopus 로고    scopus 로고
    • Neural detectors with variable threshold
    • Jun
    • A. Burian, P. Kuosmanen, and J. Saarinen, "Neural detectors with variable threshold," in Proc. ISCAS, Jun. 1999, vol. 5, pp. 599-602.
    • (1999) Proc. ISCAS , vol.5 , pp. 599-602
    • Burian, A.1    Kuosmanen, P.2    Saarinen, J.3
  • 18
    • 0031268935 scopus 로고    scopus 로고
    • Neural networks for signal detection in non-Gaussian noise
    • Nov
    • P. Gandhi and V. Ramamurti, "Neural networks for signal detection in non-Gaussian noise," IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2846-2851, Nov. 1997.
    • (1997) IEEE Trans. Signal Process , vol.45 , Issue.11 , pp. 2846-2851
    • Gandhi, P.1    Ramamurti, V.2
  • 20
    • 0025670892 scopus 로고
    • The multilayer perceptron as an approximation to a Bayes optimal discriminant function
    • Dec
    • D. Ruck, S. Rogers, M. Kabrisky, M. Oxley, and B. Suter, "The multilayer perceptron as an approximation to a Bayes optimal discriminant function," IEEE Trans. Neural Netw., vol. 1, pp. 296-298, Dec. 1990.
    • (1990) IEEE Trans. Neural Netw , vol.1 , pp. 296-298
    • Ruck, D.1    Rogers, S.2    Kabrisky, M.3    Oxley, M.4    Suter, B.5
  • 21
    • 0036487235 scopus 로고    scopus 로고
    • New training strategies for RBF neural networks for X-ray agricultural product inspection
    • Feb
    • D. Casasent and X. Chen, "New training strategies for RBF neural networks for X-ray agricultural product inspection," Pattern Recognit., vol. 36, pp. 535-547, Feb. 2003.
    • (2003) Pattern Recognit , vol.36 , pp. 535-547
    • Casasent, D.1    Chen, X.2
  • 22
    • 0038045155 scopus 로고    scopus 로고
    • Radial basis function neural networks for nonlinear Fisher discrimination and Neyman Pearson classification
    • Jun.-July
    • D. Casasent and X. Chen, "Radial basis function neural networks for nonlinear Fisher discrimination and Neyman Pearson classification," Neural Netw., vol. 16, pp. 529-535, Jun.-July 2003.
    • (2003) Neural Netw , vol.16 , pp. 529-535
    • Casasent, D.1    Chen, X.2
  • 25
    • 0032203370 scopus 로고    scopus 로고
    • Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem
    • Nov
    • S. Haykin and D. Thomson, "Signal detection in a nonstationary environment reformulated as an adaptive pattern classification problem," IEEE Trans. Signal Process., vol. 85, no. 11, pp. 2325-2344, Nov. 1998.
    • (1998) IEEE Trans. Signal Process , vol.85 , Issue.11 , pp. 2325-2344
    • Haykin, S.1    Thomson, D.2
  • 26
    • 4544358556 scopus 로고    scopus 로고
    • Development of neural network committee machines for automatic forest fire detection using Lidar
    • Oct
    • A. M. Fernandes, A. B. Utkin, A. V. Lavrov, and R. M. Vilar, "Development of neural network committee machines for automatic forest fire detection using Lidar," Pattern Recognit., vol. 37, pp. 2039-2047, Oct. 2004.
    • (2004) Pattern Recognit , vol.37 , pp. 2039-2047
    • Fernandes, A.M.1    Utkin, A.B.2    Lavrov, A.V.3    Vilar, R.M.4
  • 31
    • 0036738964 scopus 로고    scopus 로고
    • Any reasonable cost function can be used for a posteriori probability approximation
    • Sep
    • M. Saerens, P. Latinne, and C. Decaestecker, "Any reasonable cost function can be used for a posteriori probability approximation," IEEE Trans. Neural Netw., vol. 13, pp. 1204-1210, Sep. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , pp. 1204-1210
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 32
    • 84968488060 scopus 로고
    • On the strong law of large numbers
    • Apr
    • J. Slivka and N. Severo, "On the strong law of large numbers," Proc. Amer. Math. Soc., vol. 24, pp. 729-734, Apr. 1970.
    • (1970) Proc. Amer. Math. Soc , vol.24 , pp. 729-734
    • Slivka, J.1    Severo, N.2
  • 35
    • 0344286123 scopus 로고    scopus 로고
    • Performance analysis of neural network detectors by importance sampling techniques
    • Jun
    • J. L. Sanz-Gonzalez and D. Andina, "Performance analysis of neural network detectors by importance sampling techniques," Neural Process. Lett., vol. 9, pp. 257-269, Jun. 1999.
    • (1999) Neural Process. Lett , vol.9 , pp. 257-269
    • Sanz-Gonzalez, J.L.1    Andina, D.2
  • 36
    • 33846446220 scopus 로고
    • Restart procedures for the conjugate gradient method
    • Dec
    • M. Powell, "Restart procedures for the conjugate gradient method," Math. Programm., vol. 12, pp. 241-254, Dec. 1977.
    • (1977) Math. Programm , vol.12 , pp. 241-254
    • Powell, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.