메뉴 건너뛰기




Volumn 80, Issue 6-7, 2009, Pages 717-737

Bayesian hierarchical uncertainty quantification by structural equation modeling

Author keywords

Bayes network; Bayesian updating; Latent variable; Structural equation modeling; Uncertainty quantification

Indexed keywords

BAYES NETWORK; BAYESIAN UPDATING; LATENT VARIABLE; STRUCTURAL EQUATION MODELING; UNCERTAINTY QUANTIFICATION;

EID: 70350426510     PISSN: 00295981     EISSN: 10970207     Source Type: Journal    
DOI: 10.1002/nme.2550     Document Type: Article
Times cited : (26)

References (34)
  • 1
    • 0142058304 scopus 로고    scopus 로고
    • Uncertainty quantification of structural response using evidence theory
    • Bae H-R, Grandhi RV, Canfield RA. Uncertainty quantification of structural response using evidence theory. AIAA Journal 2003; 41(10):2062-2068.
    • (2003) AIAA Journal , vol.41 , Issue.10 , pp. 2062-2068
    • Bae, H.-R.1    Grandhi, R.V.2    Canfield, R.A.3
  • 3
    • 0039172603 scopus 로고    scopus 로고
    • Prediction and the quantification of uncertainty
    • Glimm J, Sharp DH. Prediction and the quantification of uncertainty. Physica D 1996; 133(1-4):152-170.
    • (1996) Physica D , vol.133 , Issue.1-4 , pp. 152-170
    • Glimm, J.1    Sharp, D.H.2
  • 4
    • 0001711258 scopus 로고    scopus 로고
    • A framework for assessing uncertainties in simulation predictions
    • Hanson KM. A framework for assessing uncertainties in simulation predictions. Physica D 1999; 133(1-4): 179-188.
    • (1999) Physica D , vol.133 , Issue.1-4 , pp. 179-188
    • Hanson, K.M.1
  • 6
    • 4344610300 scopus 로고    scopus 로고
    • Uncertainty propagation for a turbulent, compressible nozzle flow using stochastic methods
    • Mathelin L, Hussaini MY, Zhang TA, Bataille F. Uncertainty propagation for a turbulent, compressible nozzle flow using stochastic methods. AIAA Journal 2004; 42(8):1169-1176.
    • (2004) AIAA Journal , vol.42 , Issue.8 , pp. 1169-1176
    • Mathelin, L.1    Hussaini, M.Y.2    Zhang, T.A.3    Bataille, F.4
  • 8
    • 4243438165 scopus 로고    scopus 로고
    • Verification, validation, and predictive capabilities in computational engineering and physics
    • No. 2003-3769, Sandia National Laboratories, Albuquerque, New Mexico
    • Oberkampf WL, Trucano TG, Hirsch Ch. Verification, validation, and predictive capabilities in computational engineering and physics. Technical Report Sand. No. 2003-3769, Sandia National Laboratories, Albuquerque, New Mexico, 2003.
    • (2003) Technical Report Sand
    • Oberkampf, W.L.1    Trucano, T.G.2    Hirsch, C.3
  • 13
    • 0000985150 scopus 로고
    • Structural equation methods in the social sciences
    • Goldberger AS. Structural equation methods in the social sciences. Econometrica 1972; 40(6):979-1001.
    • (1972) Econometrica , vol.40 , Issue.6 , pp. 979-1001
    • Goldberger, A.S.1
  • 15
    • 67650886343 scopus 로고
    • Multivariate analysis with latent variables: Causal modeling
    • Bentler PM. Multivariate analysis with latent variables: causal modeling. Annual Review of Psychology 1980; 31(1):419-456.
    • (1980) Annual Review of Psychology , vol.31 , Issue.1 , pp. 419-456
    • Bentler, P.M.1
  • 17
    • 18044381191 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear structural equation models with continuous and polytomous data
    • Lee SY, Zhu HT. Statistical analysis of nonlinear structural equation models with continuous and polytomous data. British Journal of Mathematical and Statistical Psychology 2000; 53(2):209-232.
    • (2000) British Journal of Mathematical and Statistical Psychology , vol.53 , Issue.2 , pp. 209-232
    • Lee, S.Y.1    Zhu, H.T.2
  • 18
    • 2642522065 scopus 로고    scopus 로고
    • Bayesian model comparison of nonlinear structural equation models with missing continuous and ordinal categorical data
    • Lee SY, Song XY. Bayesian model comparison of nonlinear structural equation models with missing continuous and ordinal categorical data. British Journal of Mathematical and Statistical Psychology 2004; 57(1):131-150.
    • (2004) British Journal of Mathematical and Statistical Psychology , vol.57 , Issue.1 , pp. 131-150
    • Lee, S.Y.1    Song, X.Y.2
  • 19
    • 0031507509 scopus 로고    scopus 로고
    • Latent variable models for Teratogenesis using multiple binary outcomes
    • Legler JM, Ryan LM. Latent variable models for Teratogenesis using multiple binary outcomes. Journal of the American Statistical Association 1997; 92(437):13-20.
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.437 , pp. 13-20
    • Legler, J.M.1    Ryan, L.M.2
  • 21
    • 0032329779 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • Arminger G, Muthén BO. A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm. Psychometrika 1998; 63(3):271-300.
    • (1998) Psychometrika , vol.63 , Issue.3 , pp. 271-300
    • Arminger, G.1    Muthén, B.O.2
  • 22
    • 0034257394 scopus 로고    scopus 로고
    • A hierarchical Bayesian methodology for treating heterogeneity in structural equation models
    • Ansari A, Jedidi K, Jagpal S. A hierarchical Bayesian methodology for treating heterogeneity in structural equation models. Market Science 2000; 19(4):328-347.
    • (2000) Market Science , vol.19 , Issue.4 , pp. 328-347
    • Ansari, A.1    Jedidi, K.2    Jagpal, S.3
  • 23
    • 33645009302 scopus 로고    scopus 로고
    • Structural equation modeling: Strengths, limitations, and misconceptions
    • Tomarken AJ, Waller NG. Structural equation modeling: strengths, limitations, and misconceptions. Annual Review of Clinical Psychology 2005; 1:31-65.
    • (2005) Annual Review of Clinical Psychology , vol.1 , pp. 31-65
    • Tomarken, A.J.1    Waller, N.G.2
  • 24
    • 58749111814 scopus 로고    scopus 로고
    • Bayesian structural equation modeling method for hierarchical model validation
    • DOI: 10.1016/j.ress.2008.08.008
    • Jiang X, Mahadevan S. Bayesian structural equation modeling method for hierarchical model validation. Reliability Engineering and System Safety 2008. DOI: 10.1016/j.ress.2008.08.008.
    • (2008) Reliability Engineering and System Safety
    • Jiang, X.1    Mahadevan, S.2
  • 28
    • 5444237044 scopus 로고    scopus 로고
    • Validation of reliability computational models using Bayes networks
    • Mahadevan S, Rebba R. Validation of reliability computational models using Bayes networks. Reliability Engineering and System Safety 2005; 87(2):223-232.
    • (2005) Reliability Engineering and System Safety , vol.87 , Issue.2 , pp. 223-232
    • Mahadevan, S.1    Rebba, R.2
  • 32
    • 38049134421 scopus 로고    scopus 로고
    • Bayesian risk-based decision method for reliability assessment of multivariate model
    • Jiang X, Mahadevan S. Bayesian risk-based decision method for reliability assessment of multivariate model. Journal of Applied Statistics 2008; 35(1):49-65.
    • (2008) Journal of Applied Statistics , vol.35 , Issue.1 , pp. 49-65
    • Jiang, X.1    Mahadevan, S.2
  • 33
    • 84950622021 scopus 로고
    • EDF Statistics for goodness of fit and some comparisons
    • Stephens MA. EDF Statistics for goodness of fit and some comparisons. Journal of the American Statistical Association 1974; 69(347):730-737.
    • (1974) Journal of the American Statistical Association , vol.69 , Issue.347 , pp. 730-737
    • Stephens, M.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.