-
1
-
-
0032097489
-
Vector potentials in three-dimensional non-smooth domains
-
Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823-864 (1998).
-
(1998)
Math. Methods Appl. Sci.
, vol.21
, pp. 823-864
-
-
Amrouche, C.1
Bernardi, C.2
Dauge, M.3
Girault, V.4
-
2
-
-
0003267718
-
Anisotropic Finite Elements: Local Estimates and Applications
-
B. G. Teubner, Stuttgart
-
Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999).
-
(1999)
Advances in Numerical Mathematics
-
-
Apel, T.1
-
3
-
-
33846550050
-
Time-dependent Maxwell's equations with charges in singular geometries
-
Assous F., Ciarlet P. Jr, Garcia E., Segré J.: Time-dependent Maxwell's equations with charges in singular geometries. Comput. Methods Appl. Mech. Eng. 196, 665-681 (2006).
-
(2006)
Comput. Methods Appl. Mech. Eng.
, vol.196
, pp. 665-681
-
-
Assous, F.1
Ciarlet Jr., P.2
Garcia, E.3
Segré, J.4
-
4
-
-
0000087870
-
Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: The singular complement method
-
Assous F., Ciarlet P. Jr, Segré J.: Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys. 161, 218-249 (2000).
-
(2000)
J. Comput. Phys.
, vol.161
, pp. 218-249
-
-
Assous, F.1
Ciarlet Jr., P.2
Segré, J.3
-
6
-
-
0000171411
-
On a finite element method for solving the three-dimensional Maxwell equations
-
Assous F., Degond P., Heintzé E., Raviart P.-A., Segré J.: On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222-237 (1993).
-
(1993)
J. Comput. Phys.
, vol.109
, pp. 222-237
-
-
Assous, F.1
Degond, P.2
Heintzé, E.3
Raviart, P.-A.4
Segré, J.5
-
7
-
-
54249116319
-
Eigenvalue problems
-
North Holland, Amsterdam
-
Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641-787. North Holland, Amsterdam (1991).
-
(1991)
Handbook of Numerical Analysis
, vol.II
, pp. 641-787
-
-
Babuska, I.1
Osborn, J.E.2
-
8
-
-
0038334498
-
Three-dimensional finite element methods for the Stokes problem
-
Boffi D.: Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34, 664-670 (1997).
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 664-670
-
-
Boffi, D.1
-
9
-
-
33646735137
-
Compatible discretizations for eigenvalue problems
-
Springer, Berlin
-
Boffi, D.: Compatible discretizations for eigenvalue problems. In: Compatible Spatial Discretizations, IMA Volumes in Mathematics and its Applications, vol. 142, pp. 121-142. Springer, Berlin (2006).
-
(2006)
Compatible Spatial Discretizations, IMA Volumes in Mathematics and its Applications
, vol.142
, pp. 121-142
-
-
Boffi, D.1
-
11
-
-
44649139937
-
A locally divergence-free interior penalty method for two dimensional curl-curl problems
-
Brenner S., Li F., Sung L.-Y.: A locally divergence-free interior penalty method for two dimensional curl-curl problems. SIAM J. Numer. Anal. 46, 1190-1211 (2008).
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, pp. 1190-1211
-
-
Brenner, S.1
Li, F.2
Sung, L.-Y.3
-
13
-
-
10444222621
-
Augmented formulations for solving Maxwell equations
-
Ciarlet P. Jr: Augmented formulations for solving Maxwell equations. Comput. Methods Appl. Mech. Eng. 194, 559-586 (2005).
-
(2005)
Comput. Methods Appl. Mech. Eng.
, vol.194
, pp. 559-586
-
-
Ciarlet Jr., P.1
-
14
-
-
8644266780
-
Solving Maxwell equations in 3D prismatic domains
-
Ciarlet P. Jr, Garcia E., Zou J.: Solving Maxwell equations in 3D prismatic domains. C. R. Acad. Sci. Paris, Ser. I 339, 721-726 (2004).
-
(2004)
C. R. Acad. Sci. Paris, Ser. I
, vol.339
, pp. 721-726
-
-
Ciarlet Jr., P.1
Garcia, E.2
Zou, J.3
-
16
-
-
70350407800
-
Mixed, augmented variational formulations for Maxwell's equations: Numerical analysis via the macroelement technique
-
(submitted)
-
Ciarlet, P. Jr., Hechme, G.: Mixed, augmented variational formulations for Maxwell's equations: numerical analysis via the macroelement technique. Numer. Math. (submitted).
-
Numer. Math.
-
-
Ciarlet Jr., P.1
Hechme, G.2
-
17
-
-
55049095097
-
Computing electromagnetic eigenmodes with continuous Galerkin approximations
-
Ciarlet P. Jr, Hechme G.: Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comput. Methods Appl. Mech. Eng. 198, 358-365 (2008).
-
(2008)
Comput. Methods Appl. Mech. Eng.
, vol.198
, pp. 358-365
-
-
Ciarlet Jr., P.1
Hechme, G.2
-
18
-
-
0000152459
-
A coercive bilinear form for Maxwell's equations
-
Costabel M.: A coercive bilinear form for Maxwell's equations. J. Math. An. Appl. 157, 527-541 (1991).
-
(1991)
J. Math. An. Appl.
, vol.157
, pp. 527-541
-
-
Costabel, M.1
-
19
-
-
0036912227
-
Weighted regularization of Maxwell equations in polyhedral domains
-
Costabel M., Dauge M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239-277 (2002).
-
(2002)
Numer. Math.
, vol.93
, pp. 239-277
-
-
Costabel, M.1
Dauge, M.2
-
20
-
-
27744578399
-
Computation of resonance frequencies for Maxwell equations in non smooth domains
-
Springer, Berlin
-
Costabel, M., Dauge, M.: Computation of resonance frequencies for Maxwell equations in non smooth domains. In: Topics in ComputationalWave Propagation. Lecture Notes in Computational Science and Engineering, vol. 31, pp. 125-161. Springer, Berlin (2003).
-
(2003)
Topics in Computational Wave Propagation. Lecture Notes in Computational Science and Engineering
, vol.31
, pp. 125-161
-
-
Costabel, M.1
Dauge, M.2
-
21
-
-
17144414595
-
Exponential convergence of hp-FEM for Maxwell's equations with weighted regularization in polygonal domains
-
Costabel M., Dauge M., Schwab C.: Exponential convergence of hp-FEM for Maxwell's equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15, 575-622 (2005).
-
(2005)
Math. Models Methods Appl. Sci.
, vol.15
, pp. 575-622
-
-
Costabel, M.1
Dauge, M.2
Schwab, C.3
-
25
-
-
0038042416
-
A singular field method for Maxwell's equations: Numerical aspects for 2D magnetostatics
-
Hazard C., Lohrengel S.: A singular field method for Maxwell's equations: numerical aspects for 2D magnetostatics. SIAM J. Appl. Math. 40, 1021-1040 (2002).
-
(2002)
SIAM J. Appl. Math.
, vol.40
, pp. 1021-1040
-
-
Hazard, C.1
Lohrengel, S.2
-
27
-
-
11244301227
-
Éléments finis nodaux pour les équations de Maxwell
-
Jamelot E.: Éléments finis nodaux pour les équations de Maxwell. C. R. Acad. Sci. Paris, Sér. I 339, 809-814 (2004).
-
(2004)
C. R. Acad. Sci. Paris, Sér. I
, vol.339
, pp. 809-814
-
-
Jamelot, E.1
-
30
-
-
84966200902
-
Finite element interpolation of nonsmooth functions satisfying boundary conditions
-
Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483-493 (1990).
-
(1990)
Math. Comput.
, vol.54
, pp. 483-493
-
-
Scott, L.R.1
Zhang, S.2
-
31
-
-
46749142520
-
A multivariate Powell-Sabin interpolant
-
Sorokina T., Worsey A.J.: A multivariate Powell-Sabin interpolant. Adv. Comput. Math. 29, 71-89 (2008).
-
(2008)
Adv. Comput. Math.
, vol.29
, pp. 71-89
-
-
Sorokina, T.1
Worsey, A.J.2
-
32
-
-
84979103896
-
A local compactness theorem for Maxwell's equations
-
Weber C.: A local compactness theorem for Maxwell's equations. Math. Meth. Appl. Sci. 2, 12-25 (1980).
-
(1980)
Math. Meth. Appl. Sci.
, vol.2
, pp. 12-25
-
-
Weber, C.1
|