-
1
-
-
0000392235
-
Shearing Hyperbolic Surfaces, Bending Pleated Surfaces and Thurston's Symplectic Form
-
F. Bonahon, "Shearing Hyperbolic Surfaces, Bending Pleated Surfaces and Thurston's Symplectic Form," Ann. Fac. Sci. Toulouse, Math., Sér. 6, 5, 233-297 (1996).
-
(1996)
Ann. Fac. Sci. Toulouse, Math., Sér. 6
, vol.5
, pp. 233-297
-
-
Bonahon, F.1
-
3
-
-
0040824127
-
Quantum Mapping Class Group, Pentagon Relation, and Geodesics
-
V. V. Fock and L. O. Chekhov, "Quantum Mapping Class Group, Pentagon Relation, and Geodesics," Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 226, 163-179 (1999).
-
(1999)
Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk
, vol.226
, pp. 163-179
-
-
Fock, V.V.1
Chekhov, L.O.2
-
4
-
-
0007156445
-
Quantum Mapping Class Group, Pentagon Relation, and Geodesics
-
V. V. Fock and L. O. Chekhov, "Quantum Mapping Class Group, Pentagon Relation, and Geodesics," Proc. Steklov Inst. Math. 226, 149-163 (1999).
-
(1999)
Proc. Steklov Inst. Math.
, vol.226
, pp. 149-163
-
-
-
5
-
-
0039637527
-
A QuantumTechmüller Space
-
V. V. Fock and L. O. Chekhov, "A QuantumTechmüller Space," Teor. Mat. Fiz. 120(3), 511-528 (1999).
-
(1999)
Teor. Mat. Fiz.
, vol.120
, Issue.3
, pp. 511-528
-
-
Fock, V.V.1
Chekhov, L.O.2
-
6
-
-
0033234809
-
A QuantumTechmüller Space
-
V. V. Fock and L. O. Chekhov, "A QuantumTechmüller Space," Theor. Math. Phys. 120, 1245-1259 (1999).
-
(1999)
Theor. Math. Phys.
, vol.120
, pp. 1245-1259
-
-
Fock, V.V.1
Chekhov, L.O.2
-
7
-
-
41149099785
-
On Quantizing Teichmüller and Thurston Theories
-
Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich), Ch. 14, IRMA Lect. Math. Theor. Phys. 11, arXiv:math/0403247
-
L. O. Chekhov and R. C. Penner, "On Quantizing Teichmüller and Thurston Theories," in Handbook of Teichm üller Theory, Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich, 2007), Vol. 1, Ch. 14, IRMA Lect. Math. Theor. Phys. 11, pp. 579-645; arXiv:math/0403247.
-
(2007)
Handbook of Teichm üller Theory
, vol.1
, pp. 579-645
-
-
Chekhov, L.O.1
Penner, R.C.2
-
8
-
-
0034561868
-
Observables in 3D Gravity and Geodesic Algebras
-
L. O. Chekhov and V. V. Fock, "Observables in 3D Gravity and Geodesic Algebras," Czech. J. Phys. 50, 1201-1208 (2000).
-
(2000)
Czech. J. Phys.
, vol.50
, pp. 1201-1208
-
-
Chekhov, L.O.1
Fock, V.V.2
-
9
-
-
11444252935
-
Fuchsian Groups Generated by Half-turns and Geometrical Characterization of Hyperelliptic and Symmetric Riemann Surfaces
-
J. J. Etayo and E. Martínez, "Fuchsian Groups Generated by Half-turns and Geometrical Characterization of Hyperelliptic and Symmetric Riemann Surfaces," Math. Scand. 95, 226-244 (2004).
-
(2004)
Math. Scand.
, vol.95
, pp. 226-244
-
-
Etayo, J.J.1
Martínez, E.2
-
10
-
-
0000780056
-
Discrete Heisenberg-Weyl Group and Modular Group
-
L. D. Faddeev, "Discrete Heisenberg-Weyl Group and Modular Group," Lett. Math. Phys. 34, 249-254 (1995).
-
(1995)
Lett. Math. Phys.
, vol.34
, pp. 249-254
-
-
Faddeev, L.D.1
-
13
-
-
41149149932
-
Dual Teichmüller and Lamination Spaces
-
Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich), Ch. 15, IRMA Lect. Math. Theor. Phys. 11, arXiv:math/0510312
-
V. V. Fock and A. B. Goncharov, "Dual Teichmüller and Lamination Spaces," in Handbook of Teichmüller Theory, Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich, 2007), Vol. 1, Ch. 15, IRMA Lect. Math. Theor. Phys. 11, pp. 647-684; arXiv:math/0510312.
-
(2007)
Handbook of Teichmüller Theory
, vol.1
, pp. 647-684
-
-
Fock, V.V.1
Goncharov, A.B.2
-
14
-
-
55049091774
-
Cluster Algebras and Triangulated Surfaces. Part I: Cluster Complexes
-
arXiv:math/0608367
-
S. Fomin, M. Shapiro, and D. Thurston, "Cluster Algebras and Triangulated Surfaces. Part I: Cluster Complexes," Acta Math. 201(1), 83-146 (2008); arXiv:math/0608367.
-
(2008)
Acta Math.
, vol.201
, Issue.1
, pp. 83-146
-
-
Fomin, S.1
Shapiro, M.2
Thurston, D.3
-
15
-
-
70350407439
-
Cluster Algebras and Triangulated Surfaces. Part II: Lambda Lengths
-
S. Fomin and D. Thurston, "Cluster Algebras and Triangulated Surfaces. Part II: Lambda Lengths," Preprint (2008), http://www.math.lsa.umich.edu/~fomin/Papers/cats2.ps.
-
(2008)
Preprint
-
-
Fomin, S.1
Thurston, D.2
-
16
-
-
0036004369
-
Cluster Algebras. I: Foundations
-
S. Fomin and A. Zelevinsky, "Cluster Algebras. I: Foundations," J. Am. Math. Soc. 15(2), 497-529 (2002).
-
(2002)
J. Am. Math. Soc.
, vol.15
, Issue.2
, pp. 497-529
-
-
Fomin, S.1
Zelevinsky, A.2
-
17
-
-
0036230067
-
The Laurent Phenomenon
-
arXiv:math/0104241
-
S. Fomin and A. Zelevinsky, "The Laurent Phenomenon," Adv. Appl. Math. 28(2), 119-144 (2002); arXiv:math/0104241.
-
(2002)
Adv. Appl. Math.
, vol.28
, Issue.2
, pp. 119-144
-
-
Fomin, S.1
Zelevinsky, A.2
-
18
-
-
0000086776
-
Invariant Functions on Lie Groups and Hamiltonian Flows of Surface Group Representations
-
W. M. Goldman, "Invariant Functions on Lie Groups and Hamiltonian Flows of Surface Group Representations," Invent. Math. 85, 263-302 (1986).
-
(1986)
Invent. Math.
, vol.85
, pp. 263-302
-
-
Goldman, W.M.1
-
19
-
-
33750026792
-
On the Spectrum of Dehn Twists in Quantum Teichmüller Theory
-
River Edge, NJ: World Sci., arXiv:math/0008148
-
R. M. Kashaev, "On the Spectrum of Dehn Twists in Quantum Teichmüller Theory," in Physics and Combinatorics: Proc. Workshop, Nagoya, 2000 (World Sci., River Edge, NJ, 2001), pp. 63-81; arXiv:math/0008148.
-
(2001)
Physics and Combinatorics: Proc. Workshop, Nagoya, 2000
, pp. 63-81
-
-
Kashaev, R.M.1
-
20
-
-
0001739291
-
Quantization of Teichmüller Spaces and the Quantum Dilogarithm
-
arXiv: q-alg/9705021
-
R. M. Kashaev, "Quantization of Teichmüller Spaces and the Quantum Dilogarithm," Lett. Math. Phys. 43(2), 105-115 (1998); arXiv: q-alg/9705021.
-
(1998)
Lett. Math. Phys.
, vol.43
, Issue.2
, pp. 105-115
-
-
Kashaev, R.M.1
-
21
-
-
33745391791
-
Closed/Open String Diagrammatics
-
R. M. Kaufmann and R. C. Penner, "Closed/Open String Diagrammatics," Nucl. Phys. B 748, 335-379 (2006).
-
(2006)
Nucl. Phys. B
, vol.748
, pp. 335-379
-
-
Kaufmann, R.M.1
Penner, R.C.2
-
22
-
-
0000874343
-
2 + 1 Quantum Gravity
-
J. E. Nelson and T. Regge, "2 + 1 Quantum Gravity," Phys. Lett. B 272, 213-216 (1991).
-
(1991)
Phys. Lett. B
, vol.272
, pp. 213-216
-
-
Nelson, J.E.1
Regge, T.2
-
23
-
-
0040903862
-
Invariants of 2 + 1 Gravity
-
J. E. Nelson and T. Regge, "Invariants of 2 + 1 Gravity," Commun. Math. Phys. 155, 561-568 (1993).
-
(1993)
Commun. Math. Phys.
, vol.155
, pp. 561-568
-
-
Nelson, J.E.1
Regge, T.2
-
24
-
-
4444325247
-
The Weil-Petersson Symplectic Structure at Thurston's Boundary
-
A. Papadopoulos and R. C. Penner, "The Weil-Petersson Symplectic Structure at Thurston's Boundary," Trans. Am. Math. Soc. 335, 891-904 (1993).
-
(1993)
Trans. Am. Math. Soc.
, vol.335
, pp. 891-904
-
-
Papadopoulos, A.1
Penner, R.C.2
-
25
-
-
0000045893
-
The Decorated Teichmüller Space of Punctured Surfaces
-
R. C. Penner, "The Decorated Teichmüller Space of Punctured Surfaces," Commun. Math. Phys. 113, 299-339 (1987).
-
(1987)
Commun. Math. Phys.
, vol.113
, pp. 299-339
-
-
Penner, R.C.1
-
26
-
-
0003629524
-
-
Princeton, NJ: Princeton Univ. Press, Ann. Math. Stud.
-
R. C. Penner and J. L. Harer, Combinatorics of Train Tracks (Princeton Univ. Press, Princeton, NJ, 1992), Ann. Math. Stud. 125.
-
(1992)
Combinatorics of Train Tracks
, vol.125
-
-
Penner, R.C.1
Harer, J.L.2
-
27
-
-
55049098060
-
An Analog of a Modular Functor from Quantized Teichmüller Theory
-
Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich), Ch. 16, IRMA Lect. Math. Theor. Phys. 11, arXiv:math/0510174
-
J. Teschner, "An Analog of a Modular Functor from Quantized Teichmüller Theory," in Handbook of Teichmüller Theory, Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich, 2007), Vol. 1, Ch. 16, IRMA Lect. Math. Theor. Phys. 11, pp. 685-760; arXiv:math/0510174.
-
(2007)
Handbook of Teichmüller Theory
, vol.1
, pp. 685-760
-
-
Teschner, J.1
|