메뉴 건너뛰기




Volumn 266, Issue 1, 2009, Pages 228-250

Riemann surfaces with orbifold points

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70350417096     PISSN: 00815438     EISSN: None     Source Type: Journal    
DOI: 10.1134/S0081543809030146     Document Type: Article
Times cited : (9)

References (28)
  • 1
    • 0000392235 scopus 로고    scopus 로고
    • Shearing Hyperbolic Surfaces, Bending Pleated Surfaces and Thurston's Symplectic Form
    • F. Bonahon, "Shearing Hyperbolic Surfaces, Bending Pleated Surfaces and Thurston's Symplectic Form," Ann. Fac. Sci. Toulouse, Math., Sér. 6, 5, 233-297 (1996).
    • (1996) Ann. Fac. Sci. Toulouse, Math., Sér. 6 , vol.5 , pp. 233-297
    • Bonahon, F.1
  • 4
    • 0007156445 scopus 로고    scopus 로고
    • Quantum Mapping Class Group, Pentagon Relation, and Geodesics
    • V. V. Fock and L. O. Chekhov, "Quantum Mapping Class Group, Pentagon Relation, and Geodesics," Proc. Steklov Inst. Math. 226, 149-163 (1999).
    • (1999) Proc. Steklov Inst. Math. , vol.226 , pp. 149-163
  • 5
    • 0039637527 scopus 로고    scopus 로고
    • A QuantumTechmüller Space
    • V. V. Fock and L. O. Chekhov, "A QuantumTechmüller Space," Teor. Mat. Fiz. 120(3), 511-528 (1999).
    • (1999) Teor. Mat. Fiz. , vol.120 , Issue.3 , pp. 511-528
    • Fock, V.V.1    Chekhov, L.O.2
  • 6
    • 0033234809 scopus 로고    scopus 로고
    • A QuantumTechmüller Space
    • V. V. Fock and L. O. Chekhov, "A QuantumTechmüller Space," Theor. Math. Phys. 120, 1245-1259 (1999).
    • (1999) Theor. Math. Phys. , vol.120 , pp. 1245-1259
    • Fock, V.V.1    Chekhov, L.O.2
  • 7
    • 41149099785 scopus 로고    scopus 로고
    • On Quantizing Teichmüller and Thurston Theories
    • Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich), Ch. 14, IRMA Lect. Math. Theor. Phys. 11, arXiv:math/0403247
    • L. O. Chekhov and R. C. Penner, "On Quantizing Teichmüller and Thurston Theories," in Handbook of Teichm üller Theory, Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich, 2007), Vol. 1, Ch. 14, IRMA Lect. Math. Theor. Phys. 11, pp. 579-645; arXiv:math/0403247.
    • (2007) Handbook of Teichm üller Theory , vol.1 , pp. 579-645
    • Chekhov, L.O.1    Penner, R.C.2
  • 8
    • 0034561868 scopus 로고    scopus 로고
    • Observables in 3D Gravity and Geodesic Algebras
    • L. O. Chekhov and V. V. Fock, "Observables in 3D Gravity and Geodesic Algebras," Czech. J. Phys. 50, 1201-1208 (2000).
    • (2000) Czech. J. Phys. , vol.50 , pp. 1201-1208
    • Chekhov, L.O.1    Fock, V.V.2
  • 9
    • 11444252935 scopus 로고    scopus 로고
    • Fuchsian Groups Generated by Half-turns and Geometrical Characterization of Hyperelliptic and Symmetric Riemann Surfaces
    • J. J. Etayo and E. Martínez, "Fuchsian Groups Generated by Half-turns and Geometrical Characterization of Hyperelliptic and Symmetric Riemann Surfaces," Math. Scand. 95, 226-244 (2004).
    • (2004) Math. Scand. , vol.95 , pp. 226-244
    • Etayo, J.J.1    Martínez, E.2
  • 10
    • 0000780056 scopus 로고
    • Discrete Heisenberg-Weyl Group and Modular Group
    • L. D. Faddeev, "Discrete Heisenberg-Weyl Group and Modular Group," Lett. Math. Phys. 34, 249-254 (1995).
    • (1995) Lett. Math. Phys. , vol.34 , pp. 249-254
    • Faddeev, L.D.1
  • 13
    • 41149149932 scopus 로고    scopus 로고
    • Dual Teichmüller and Lamination Spaces
    • Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich), Ch. 15, IRMA Lect. Math. Theor. Phys. 11, arXiv:math/0510312
    • V. V. Fock and A. B. Goncharov, "Dual Teichmüller and Lamination Spaces," in Handbook of Teichmüller Theory, Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich, 2007), Vol. 1, Ch. 15, IRMA Lect. Math. Theor. Phys. 11, pp. 647-684; arXiv:math/0510312.
    • (2007) Handbook of Teichmüller Theory , vol.1 , pp. 647-684
    • Fock, V.V.1    Goncharov, A.B.2
  • 14
    • 55049091774 scopus 로고    scopus 로고
    • Cluster Algebras and Triangulated Surfaces. Part I: Cluster Complexes
    • arXiv:math/0608367
    • S. Fomin, M. Shapiro, and D. Thurston, "Cluster Algebras and Triangulated Surfaces. Part I: Cluster Complexes," Acta Math. 201(1), 83-146 (2008); arXiv:math/0608367.
    • (2008) Acta Math. , vol.201 , Issue.1 , pp. 83-146
    • Fomin, S.1    Shapiro, M.2    Thurston, D.3
  • 15
    • 70350407439 scopus 로고    scopus 로고
    • Cluster Algebras and Triangulated Surfaces. Part II: Lambda Lengths
    • S. Fomin and D. Thurston, "Cluster Algebras and Triangulated Surfaces. Part II: Lambda Lengths," Preprint (2008), http://www.math.lsa.umich.edu/~fomin/Papers/cats2.ps.
    • (2008) Preprint
    • Fomin, S.1    Thurston, D.2
  • 16
    • 0036004369 scopus 로고    scopus 로고
    • Cluster Algebras. I: Foundations
    • S. Fomin and A. Zelevinsky, "Cluster Algebras. I: Foundations," J. Am. Math. Soc. 15(2), 497-529 (2002).
    • (2002) J. Am. Math. Soc. , vol.15 , Issue.2 , pp. 497-529
    • Fomin, S.1    Zelevinsky, A.2
  • 17
    • 0036230067 scopus 로고    scopus 로고
    • The Laurent Phenomenon
    • arXiv:math/0104241
    • S. Fomin and A. Zelevinsky, "The Laurent Phenomenon," Adv. Appl. Math. 28(2), 119-144 (2002); arXiv:math/0104241.
    • (2002) Adv. Appl. Math. , vol.28 , Issue.2 , pp. 119-144
    • Fomin, S.1    Zelevinsky, A.2
  • 18
    • 0000086776 scopus 로고
    • Invariant Functions on Lie Groups and Hamiltonian Flows of Surface Group Representations
    • W. M. Goldman, "Invariant Functions on Lie Groups and Hamiltonian Flows of Surface Group Representations," Invent. Math. 85, 263-302 (1986).
    • (1986) Invent. Math. , vol.85 , pp. 263-302
    • Goldman, W.M.1
  • 19
    • 33750026792 scopus 로고    scopus 로고
    • On the Spectrum of Dehn Twists in Quantum Teichmüller Theory
    • River Edge, NJ: World Sci., arXiv:math/0008148
    • R. M. Kashaev, "On the Spectrum of Dehn Twists in Quantum Teichmüller Theory," in Physics and Combinatorics: Proc. Workshop, Nagoya, 2000 (World Sci., River Edge, NJ, 2001), pp. 63-81; arXiv:math/0008148.
    • (2001) Physics and Combinatorics: Proc. Workshop, Nagoya, 2000 , pp. 63-81
    • Kashaev, R.M.1
  • 20
    • 0001739291 scopus 로고    scopus 로고
    • Quantization of Teichmüller Spaces and the Quantum Dilogarithm
    • arXiv: q-alg/9705021
    • R. M. Kashaev, "Quantization of Teichmüller Spaces and the Quantum Dilogarithm," Lett. Math. Phys. 43(2), 105-115 (1998); arXiv: q-alg/9705021.
    • (1998) Lett. Math. Phys. , vol.43 , Issue.2 , pp. 105-115
    • Kashaev, R.M.1
  • 21
    • 33745391791 scopus 로고    scopus 로고
    • Closed/Open String Diagrammatics
    • R. M. Kaufmann and R. C. Penner, "Closed/Open String Diagrammatics," Nucl. Phys. B 748, 335-379 (2006).
    • (2006) Nucl. Phys. B , vol.748 , pp. 335-379
    • Kaufmann, R.M.1    Penner, R.C.2
  • 22
    • 0000874343 scopus 로고
    • 2 + 1 Quantum Gravity
    • J. E. Nelson and T. Regge, "2 + 1 Quantum Gravity," Phys. Lett. B 272, 213-216 (1991).
    • (1991) Phys. Lett. B , vol.272 , pp. 213-216
    • Nelson, J.E.1    Regge, T.2
  • 23
    • 0040903862 scopus 로고
    • Invariants of 2 + 1 Gravity
    • J. E. Nelson and T. Regge, "Invariants of 2 + 1 Gravity," Commun. Math. Phys. 155, 561-568 (1993).
    • (1993) Commun. Math. Phys. , vol.155 , pp. 561-568
    • Nelson, J.E.1    Regge, T.2
  • 24
    • 4444325247 scopus 로고
    • The Weil-Petersson Symplectic Structure at Thurston's Boundary
    • A. Papadopoulos and R. C. Penner, "The Weil-Petersson Symplectic Structure at Thurston's Boundary," Trans. Am. Math. Soc. 335, 891-904 (1993).
    • (1993) Trans. Am. Math. Soc. , vol.335 , pp. 891-904
    • Papadopoulos, A.1    Penner, R.C.2
  • 25
    • 0000045893 scopus 로고
    • The Decorated Teichmüller Space of Punctured Surfaces
    • R. C. Penner, "The Decorated Teichmüller Space of Punctured Surfaces," Commun. Math. Phys. 113, 299-339 (1987).
    • (1987) Commun. Math. Phys. , vol.113 , pp. 299-339
    • Penner, R.C.1
  • 26
  • 27
    • 55049098060 scopus 로고    scopus 로고
    • An Analog of a Modular Functor from Quantized Teichmüller Theory
    • Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich), Ch. 16, IRMA Lect. Math. Theor. Phys. 11, arXiv:math/0510174
    • J. Teschner, "An Analog of a Modular Functor from Quantized Teichmüller Theory," in Handbook of Teichmüller Theory, Ed. by A. Papadopoulos (Eur. Math. Soc., Zürich, 2007), Vol. 1, Ch. 16, IRMA Lect. Math. Theor. Phys. 11, pp. 685-760; arXiv:math/0510174.
    • (2007) Handbook of Teichmüller Theory , vol.1 , pp. 685-760
    • Teschner, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.