메뉴 건너뛰기




Volumn 18, Issue 9, 2009, Pages 622-633

Mixtures of correlated bosons and fermions: Dynamical mean-field theory for normal and condensed phases

Author keywords

Correlated lattice fermions and bosons; Dynamical mean field theory

Indexed keywords

ARBITRARY VALUES; BOSE-FERMI MIXTURES; CONDENSED PHASIS; COORDINATION NUMBER; CORRELATED LATTICE FERMIONS AND BOSONS; COUPLING PARAMETERS; DYNAMIC COUPLINGS; DYNAMICAL MEAN-FIELD THEORY; EFFECTIVE INTERACTIONS; HIGH SPATIAL DIMENSIONS; INTERACTING BOSONS; INTERACTION MODEL; REPULSIVE INTERACTIONS; THEORETICAL INVESTIGATIONS;

EID: 70350302887     PISSN: 00033804     EISSN: 15213889     Source Type: Journal    
DOI: 10.1002/andp.200910362     Document Type: Article
Times cited : (13)

References (59)
  • 22
    • 70350338229 scopus 로고    scopus 로고
    • A. Hubener, M. Snoek, and W. Hofstetter, private communication and arXiv:0902.2212
    • A. Hubener, M. Snoek, and W. Hofstetter, private communication and arXiv:0902.2212.
  • 23
    • 70350303614 scopus 로고    scopus 로고
    • W.-J. Hu and N.-H. Tong, private communication and arXiv:0907.2928
    • W.-J. Hu and N.-H. Tong, private communication and arXiv:0907.2928.
  • 24
    • 70350347725 scopus 로고    scopus 로고
    • G. Semerjian, M. Tarzia, and F. Zamponii, private communication and arXiv:0904.3075 (2009)
    • G. Semerjian, M. Tarzia, and F. Zamponii, private communication and arXiv:0904.3075 (2009).
  • 30
    • 70350348682 scopus 로고    scopus 로고
    • T. Enss and W. Zwerger, arXiv:0807.0002
    • T. Enss and W. Zwerger, arXiv:0807.0002.
  • 44
    • 65549148932 scopus 로고    scopus 로고
    • Phys. Rev. B 79, 144506 (2009).
    • (2009) Phys. Rev. B , vol.79 , pp. 144506
  • 45
    • 70350302627 scopus 로고    scopus 로고
    • S. Tewari, R. Lutchyn, and S. Das Sarma, arXiv:0902.0172
    • S. Tewari, R. Lutchyn, and S. Das Sarma, arXiv:0902.0172.
  • 47
    • 70350340066 scopus 로고    scopus 로고
    • There is, of course, an interaction between fermions on nearest-neighbor sites. Since the van-der-Waals interaction between free atoms is short range and the lattice Wannier wave functions are localized this interaction is neglected with respect to all local interactions. In addition, in the DMFT approach employed here such an interation reduces to static, Hartree-type potentials which merely renormalize the chemical potential [47]
    • There is, of course, an interaction between fermions on nearest-neighbor sites. Since the van-der-Waals interaction between free atoms is short range and the lattice Wannier wave functions are localized this interaction is neglected with respect to all local interactions. In addition, in the DMFT approach employed here such an interation reduces to static, Hartree-type potentials which merely renormalize the chemical potential [47].
  • 49
    • 70350336252 scopus 로고    scopus 로고
    • b ij/(ZRij )s, where Rij is the distance between sites i and j, with s = 1 if the bosons are quantum condensed and s = 1/2 if they are in the normal state, respectively
    • b ij/(ZRij )s, where Rij is the distance between sites i and j, with s = 1 if the bosons are quantum condensed and s = 1/2 if they are in the normal state, respectively.
  • 53
    • 70350345841 scopus 로고    scopus 로고
    • The notation (Tτ b(τ )b†(τ ′))S, where b(τ ), b†(τ ) are bosonic operators in the Heisenberg representation, is meant to imply that the quantum mechanical and statistical averages are calculated within a path integral formalism with the action S. Namely, (Tτ b(τ )b†(τ ′))S = ∫ D [b]b(τ )b*(τ ′) exp(-S [b])/Z, where the functional integral is performed in the space of complex functions b(τ ) which obey periodic boundary conditions b(τ +β) = b(τ ), and Z = ∫ D [b] exp(-S [b]) [53]. In the case of fermions the corresponding functional integrals are performed with Grassmann (anticommuting) variables satisfying anti-periodic boundary conditions
    • The notation (Tτ b(τ )b†(τ ′))S, where b(τ ), b†(τ ) are bosonic operators in the Heisenberg representation, is meant to imply that the quantum mechanical and statistical averages are calculated within a path integral formalism with the action S. Namely, (Tτ b(τ )b†(τ ′))S = ∫ D [b]b(τ )b*(τ ′) exp(-S [b])/Z, where the functional integral is performed in the space of complex functions b(τ ) which obey periodic boundary conditions b(τ +β) = b(τ ), and Z = ∫ D [b] exp(-S [b]) [53]. In the case of fermions the corresponding functional integrals are performed with Grassmann (anticommuting) variables satisfying anti-periodic boundary conditions.
  • 54
    • 70350335332 scopus 로고
    • Quantum Many-particle Systems Addison-Wesley, Menlo Park
    • J.W. Negele and H. Orland, Quantum Many-particle Systems (Addison-Wesley, Menlo Park, 1988).
    • (1988)
    • Negele, J.W.1    Orland, H.2
  • 56
    • 70350303613 scopus 로고    scopus 로고
    • private communication
    • P.Werner, private communication (2008).
    • (2008)
    • Werner, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.