-
1
-
-
49449100276
-
A variational approach to removing multiplicative noise
-
Aubert G., and Aujol J.F. A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68 (2008) 925-946
-
(2008)
SIAM J. Appl. Math.
, vol.68
, pp. 925-946
-
-
Aubert, G.1
Aujol, J.F.2
-
3
-
-
0036700323
-
Adaptive total variation for image restoration in BV space
-
Chen Y.M., and Wunderli T. Adaptive total variation for image restoration in BV space. J. Math. Anal. Appl. 272 (2002) 117-137
-
(2002)
J. Math. Anal. Appl.
, vol.272
, pp. 117-137
-
-
Chen, Y.M.1
Wunderli, T.2
-
5
-
-
0003343498
-
Minimal Surfaces and Functions of Bounded Variation
-
Brikhäuser, Basel
-
Giusti F. Minimal Surfaces and Functions of Bounded Variation. Monogr. Math. vol. 80 (1984), Brikhäuser, Basel
-
(1984)
Monogr. Math.
, vol.80
-
-
Giusti, F.1
-
6
-
-
84907779428
-
A new total variation method for multiplicative noise removal
-
Huang Y., Ng M., and Wen Y. A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2 1 (2009) 20-40
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, Issue.1
, pp. 20-40
-
-
Huang, Y.1
Ng, M.2
Wen, Y.3
-
7
-
-
55149111865
-
A fast total variation minimization method for image restoration
-
Huang Y., Ng M., and Wen Y. A fast total variation minimization method for image restoration. SIAM J. Multiscale Model. Simul. 7 (2008) 774-795
-
(2008)
SIAM J. Multiscale Model. Simul.
, vol.7
, pp. 774-795
-
-
Huang, Y.1
Ng, M.2
Wen, Y.3
-
8
-
-
0032646628
-
Image sequence analysis via partial differential equations
-
Kornprobst P., Deriche R., and Aubert G. Image sequence analysis via partial differential equations. J. Math. Imaging Vision 11 1 (1999) 5-26
-
(1999)
J. Math. Imaging Vision
, vol.11
, Issue.1
, pp. 5-26
-
-
Kornprobst, P.1
Deriche, R.2
Aubert, G.3
-
10
-
-
4544278119
-
Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time
-
Lysaker M., Lundervold A., and Tai X.C. Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12 12 (2003) 1579-1590
-
(2003)
IEEE Trans. Image Process.
, vol.12
, Issue.12
, pp. 1579-1590
-
-
Lysaker, M.1
Lundervold, A.2
Tai, X.C.3
-
11
-
-
4344584160
-
Multiplicative denoising and deblurring: Theory and algorithms
-
Osher S., and Paragios N. (Eds), Springer
-
Rudin L., Lions P.-L., and Osher S. Multiplicative denoising and deblurring: Theory and algorithms. In: Osher S., and Paragios N. (Eds). Geometric Level Sets in Imaging, Vision, and Graphics (2003), Springer 103-119
-
(2003)
Geometric Level Sets in Imaging, Vision, and Graphics
, pp. 103-119
-
-
Rudin, L.1
Lions, P.-L.2
Osher, S.3
-
12
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
Rudin L., Osher S., and Fatemi E. Nonlinear total variation based noise removal algorithms. Phys. D 60 (1992) 259-268
-
(1992)
Phys. D
, vol.60
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
13
-
-
84975594858
-
When is speckle noise multiplicative?
-
Tur M., Chin C., and Goodman J.W. When is speckle noise multiplicative?. Appl. Optics 21 7 (1982) 1157-1159
-
(1982)
Appl. Optics
, vol.21
, Issue.7
, pp. 1157-1159
-
-
Tur, M.1
Chin, C.2
Goodman, J.W.3
-
14
-
-
0026857269
-
An evolution problem for plastic antiplanar shear
-
Zhou X. An evolution problem for plastic antiplanar shear. Appl. Math. Optim. 25 (1992) 263-285
-
(1992)
Appl. Math. Optim.
, vol.25
, pp. 263-285
-
-
Zhou, X.1
|