메뉴 건너뛰기




Volumn 5651 LNAI, Issue , 2009, Pages 265-274

Subgroup discovery in data sets with multi-dimensional responses: A method and a case study in traumatology

Author keywords

2 statistics; Femoral neck fracture; K medoids clustering; Multi label prediction; Subgroup discovery

Indexed keywords

CLINICAL DATA; CONTINGENCY TABLE; DATA MINING TECHNIQUES; DATA SETS; DOMAIN EXPERTS; EXPERIMENTAL DATA; EXPERIMENTAL PARAMETERS; FEMORAL NECK FRACTURE; INPUT AND OUTPUTS; K-MEDOIDS; K-MEDOIDS CLUSTERING; MULTI-LABEL PREDICTION; SUBGROUP DISCOVERY; TRAUMATOLOGY;

EID: 70350238662     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02976-9_39     Document Type: Conference Paper
Times cited : (9)

References (14)
  • 2
    • 0030285403 scopus 로고    scopus 로고
    • The kdd process for extracting useful knowledge from volumes of data
    • Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The kdd process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27-34 (1996)
    • (1996) Commun. ACM , vol.39 , Issue.11 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 5
    • 34548735819 scopus 로고    scopus 로고
    • Kavšek, B., Lavrač, N., Jovanoski, V.: APRIOPJ-SD: Adapting association rule learning to subgroup discovery. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, 2810, pp. 230-241. Springer, Heidelberg (2003)
    • Kavšek, B., Lavrač, N., Jovanoski, V.: APRIOPJ-SD: Adapting association rule learning to subgroup discovery. In: R. Berthold, M., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 230-241. Springer, Heidelberg (2003)
  • 6
    • 33747881454 scopus 로고    scopus 로고
    • APRIORI-SD: Adapting association rule learning to subgroup discovery
    • Kavšek, B., Lavrač, N.: APRIORI-SD: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence 20(7), 543-583 (2006)
    • (2006) Applied Artificial Intelligence , vol.20 , Issue.7 , pp. 543-583
    • Kavšek, B.1    Lavrač, N.2
  • 8
    • 33745782072 scopus 로고    scopus 로고
    • Ženko, B., Struyf, J.: Learning predictive clustering rules. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, 3933, pp. 234-250. Springer, Heidelberg (2006)
    • Ženko, B., Struyf, J.: Learning predictive clustering rules. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234-250. Springer, Heidelberg (2006)
  • 11
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53-65 (1987)
    • (1987) J. Comput. Appl. Math , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.1
  • 12
    • 47249125437 scopus 로고    scopus 로고
    • INCA: New statistic for estimating the number of clusters and identifying atypical units
    • Irigoien, I., Arenas, C.: INCA: new statistic for estimating the number of clusters and identifying atypical units. Statistics in Medicine 27(15), 2948-2973 (2008)
    • (2008) Statistics in Medicine , vol.27 , Issue.15 , pp. 2948-2973
    • Irigoien, I.1    Arenas, C.2
  • 14
    • 84992726552 scopus 로고    scopus 로고
    • Kononenko, I.: Estimating attributes: Analysis and extensions of relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, 784, pp. 171-182. Springer, Heidelberg (1994)
    • Kononenko, I.: Estimating attributes: Analysis and extensions of relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171-182. Springer, Heidelberg (1994)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.