메뉴 건너뛰기




Volumn , Issue , 2009, Pages 534-537

Identifying functional connectivity of motor neuronal ensembles improves the performance of population decoders

Author keywords

Bayesian inference; Bayesian networks; Center out reach task; Component; Functional connectivity; Neural decoding

Indexed keywords

BAYESIAN INFERENCE; CENTER-OUT REACH TASK; COMPONENT; FUNCTIONAL CONNECTIVITY; NEURAL DECODING;

EID: 70350233532     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/NER.2009.5109351     Document Type: Conference Paper
Times cited : (2)

References (14)
  • 1
    • 0030686449 scopus 로고    scopus 로고
    • Decoding Visual Information From a Population of Retinal Ganglion Cells
    • D. K. Warland, P. Reinagel, and M. Meister, "Decoding Visual Information From a Population of Retinal Ganglion Cells," Journal of Neurophysiology, vol. 78, pp. 2336-2350, 1997.
    • (1997) Journal of Neurophysiology , vol.78 , pp. 2336-2350
    • Warland, D.K.1    Reinagel, P.2    Meister, M.3
  • 4
    • 0032530363 scopus 로고    scopus 로고
    • A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells
    • E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson, "A Statistical Paradigm for Neural Spike Train Decoding Applied to Position Prediction from Ensemble Firing Patterns of Rat Hippocampal Place Cells," Journal of Neuroscience, vol. 18, pp. 7411-7425, 1998.
    • (1998) Journal of Neuroscience , vol.18 , pp. 7411-7425
    • Brown, E.N.1    Frank, L.M.2    Tang, D.3    Quirk, M.C.4    Wilson, M.A.5
  • 5
    • 0013288412 scopus 로고    scopus 로고
    • Dynamic Bayesian Networks: Representation, Inference and Learning,
    • PhD thesis, UC Berkeley, Computer Science Division
    • K. Murphy, "Dynamic Bayesian Networks: Representation, Inference and Learning," PhD thesis, UC Berkeley, Computer Science Division, 2002.
    • (2002)
    • Murphy, K.1
  • 7
    • 70350236064 scopus 로고    scopus 로고
    • N. Friedman, I. Nachman, and D. Pe'er, Learning Bayesian network structure from massive datasets: The sparse candidate algorithm, in In Fifteenth Conference on Uncertainty in Artificial Intelligence (UAl- 99), 1999.
    • N. Friedman, I. Nachman, and D. Pe'er, " Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm," in In Fifteenth Conference on Uncertainty in Artificial Intelligence (UAl- 99), 1999.
  • 8
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • A. J. Hartemink, D. K. Gifford, T. Jaakkola, and R. Young, "Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks," in Pacific Symposium on Biocomputing (PSB01), 2001, pp. 422-433.
    • (2001) Pacific Symposium on Biocomputing (PSB01) , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.3    Young, R.4
  • 9
    • 70350226866 scopus 로고    scopus 로고
    • Identifying Functional Connectivity in Large-Scale Neural Ensemble Recordings: A Multiscale Data Mining Approach, Neural Computation, p
    • in press
    • S. Eldawlatly, R. Jin, and K. G. Oweiss, "Identifying Functional Connectivity in Large-Scale Neural Ensemble Recordings: A Multiscale Data Mining Approach," Neural Computation, p. in press, 2008.
    • (2008)
    • Eldawlatly, S.1    Jin, R.2    Oweiss, K.G.3
  • 10
    • 70350212236 scopus 로고    scopus 로고
    • On The Use of Dynamic Bayesian Networks in Reconstructing Functional Neuronal Networks from Spike Train Ensembles
    • S. Eldawlatly, Y. Zhou, R. Jin, and K. Oweiss, "On The Use of Dynamic Bayesian Networks in Reconstructing Functional Neuronal Networks from Spike Train Ensembles," Submitted to Neural Computation, 2008.
    • (2008) Submitted to Neural Computation
    • Eldawlatly, S.1    Zhou, Y.2    Jin, R.3    Oweiss, K.4
  • 11
    • 0000040173 scopus 로고
    • The Identification of Point Process Systems
    • D. Brillinger, "The Identification of Point Process Systems," Annals of Probability, vol. 3, pp. 909-924, 1975.
    • (1975) Annals of Probability , vol.3 , pp. 909-924
    • Brillinger, D.1
  • 13
    • 55449121121 scopus 로고    scopus 로고
    • A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback
    • R. Legenstein, D. Pecevski, and W. Maass, "A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback," PLoS Computational Biology, vol. 4, p. e1000180, 2008.
    • (2008) PLoS Computational Biology , vol.4
    • Legenstein, R.1    Pecevski, D.2    Maass, W.3
  • 14
    • 0037187567 scopus 로고    scopus 로고
    • Spike-timing-dependent synaptic modification induced by natural spike trains
    • R. C. Froemke and Y. Dan, "Spike-timing-dependent synaptic modification induced by natural spike trains," Nature Neuroscience, vol. 416, pp. 433-438, 2002.
    • (2002) Nature Neuroscience , vol.416 , pp. 433-438
    • Froemke, R.C.1    Dan, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.