-
1
-
-
0032895234
-
-
10.1046/j.1365-2958.1999.01351.x
-
X. C. Yu and W. Margolin, Mol. Microbiol. 32, 315 (1999). 10.1046/j.1365-2958.1999.01351.x
-
(1999)
Mol. Microbiol.
, vol.32
, pp. 315
-
-
Yu, X.C.1
Margolin, W.2
-
2
-
-
0026039677
-
-
P. A. J. de Boer, R. E. Crossley, A. R. Hand, and L. I. Rothfield, EMBO J. 10, 4371 (1991).
-
(1991)
EMBO J.
, vol.10
, pp. 4371
-
-
De Boer, P.A.J.1
Crossley, R.E.2
Hand, A.R.3
Rothfield, L.I.4
-
3
-
-
0034964370
-
-
10.1016/S1097-2765(01)00273-8
-
Z. Hu and J. Lutkenhaus, Mol. Cell 7, 1337 (2001). 10.1016/S1097-2765(01) 00273-8
-
(2001)
Mol. Cell
, vol.7
, pp. 1337
-
-
Hu, Z.1
Lutkenhaus, J.2
-
5
-
-
0033592949
-
-
10.1073/pnas.96.26.14819
-
Z. Hu, A. Mukherjee, S. Pichoff, and J. Lutkenhaus, Proc. Natl. Acad. Sci. U.S.A. 96, 14819 (1999). 10.1073/pnas.96.26.14819
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 14819
-
-
Hu, Z.1
Mukherjee, A.2
Pichoff, S.3
Lutkenhaus, J.4
-
7
-
-
55949084028
-
-
10.1007/978-0-387-09794-7-4
-
J. Lutkenhaus, Adv. Exp. Med. Biol. 641, 49 (2009). 10.1007/978-0-387- 09794-7-4
-
(2009)
Adv. Exp. Med. Biol.
, vol.641
, pp. 49
-
-
Lutkenhaus, J.1
-
11
-
-
11344290125
-
-
10.1016/j.resmic.2004.07.009
-
J. Szeto, N. F. Eng, S. Acharya, M. D. Rigden, and J.-A. R. Dillon, Res. Microbiol. 156, 17 (2005). 10.1016/j.resmic.2004.07.009
-
(2005)
Res. Microbiol.
, vol.156
, pp. 17
-
-
Szeto, J.1
Eng, N.F.2
Acharya, S.3
Rigden, M.D.4
Dillon, J.-A.R.5
-
13
-
-
22244444522
-
-
10.1088/1478-3975/2/2/002
-
G. Meacci and K. Kruse, Phys. Biol. 2, 89 (2005). 10.1088/1478-3975/2/2/ 002
-
(2005)
Phys. Biol.
, vol.2
, pp. 89
-
-
Meacci, G.1
Kruse, K.2
-
17
-
-
31044441342
-
-
10.1073/pnas.0505825102
-
R. Kerr, H. Levine, T. Sejnowski, and W. Rappel, Proc. Natl. Acad. Sci. U.S.A. 103, 347 (2006). 10.1073/pnas.0505825102
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 347
-
-
Kerr, R.1
Levine, H.2
Sejnowski, T.3
Rappel, W.4
-
18
-
-
33745591124
-
-
10.1371/journal.pcbi.0020080
-
D. Fange and J. Elf, PLoS Comput. Biol. 2, e80 (2006). 10.1371/journal.pcbi.0020080
-
(2006)
PLoS Comput. Biol.
, vol.2
, pp. 80
-
-
Fange, D.1
Elf, J.2
-
19
-
-
0036154068
-
-
10.1016/S0006-3495(02)75426-X
-
K. Kruse, Biophys. J. 82, 618 (2002). 10.1016/S0006-3495(02)75426-X
-
(2002)
Biophys. J.
, vol.82
, pp. 618
-
-
Kruse, K.1
-
23
-
-
33645549945
-
-
10.1088/1478-3975/3/1/001
-
F. Tostevin and M. Howard, Phys. Biol. 3, 1 (2006). 10.1088/1478-3975/3/ 1/001
-
(2006)
Phys. Biol.
, vol.3
, pp. 1
-
-
Tostevin, F.1
Howard, M.2
-
24
-
-
70349694042
-
-
10.1371/journal.pone.0007285
-
B. P. B. Downing, A. D. Rutenberg, A. Touhami, and M. Jericho, PLoS ONE 4, e7285 (2009). 10.1371/journal.pone.0007285
-
(2009)
PLoS ONE
, vol.4
, pp. 7285
-
-
Downing, B.P.B.1
Rutenberg, A.D.2
Touhami, A.3
Jericho, M.4
-
25
-
-
59149094865
-
-
10.1074/jbc.M805189200
-
E. Mileykovskaya, A. C. Ryan, X. Mo, C. C. Lin, K. I. Khalaf, W. Dowhan, and T. A. Garrett, J. Biol. Chem. 284, 2990 (2009). 10.1074/jbc.M805189200
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 2990
-
-
Mileykovskaya, E.1
Ryan, A.C.2
Mo, X.3
Lin, C.C.4
Khalaf, K.I.5
Dowhan, W.6
Garrett, T.A.7
-
26
-
-
54049088085
-
-
10.1016/j.bbamem.2008.08.004
-
S. Mazor, T. Regev, E. Mileykovskaya, W. Margolin, W. Dowhan, and I. Fishov, Biochim. Biophys. Acta 1778, 2505 (2008). 10.1016/j.bbamem.2008.08.004
-
(2008)
Biochim. Biophys. Acta
, vol.1778
, pp. 2505
-
-
Mazor, S.1
Regev, T.2
Mileykovskaya, E.3
Margolin, W.4
Dowhan, W.5
Fishov, I.6
-
28
-
-
33846998421
-
-
10.1088/1478-3975/3/4/003
-
G. Meacci, J. Ries, E. Fischer-Friedrich, N. Kahya, P. Schwille, and K. Kruse, Phys. Biol. 3, 255 (2006). 10.1088/1478-3975/3/4/003
-
(2006)
Phys. Biol.
, vol.3
, pp. 255
-
-
Meacci, G.1
Ries, J.2
Fischer-Friedrich, E.3
Kahya, N.4
Schwille, P.5
Kruse, K.6
-
30
-
-
0037929218
-
-
10.1074/jbc.M302603200
-
E. Mileykovskaya, I. Fishov, X. Fu, B. Corbin, W. Margolin, and W. Dowhan, J. Biol. Chem. 278, 22193 (2003). 10.1074/jbc.M302603200
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 22193
-
-
Mileykovskaya, E.1
Fishov, I.2
Fu, X.3
Corbin, B.4
Margolin, W.5
Dowhan, W.6
-
32
-
-
0036646101
-
-
10.1093/emboj/cdf323
-
Y.-L. Shih, X. Fu, G. F. King, T. Le, and L. Rothfield, EMBO J. 21, 3347 (2002). 10.1093/emboj/cdf323
-
(2002)
EMBO J.
, vol.21
, pp. 3347
-
-
Shih, Y.-L.1
Fu, X.2
King, G.F.3
Le, T.4
Rothfield, L.5
-
35
-
-
68949091841
-
-
10.1103/PhysRevE.80.011922
-
J. Derr, J. T. Hopper, A. Sain, and A. D. Rutenberg, Phys. Rev. E 80, 011922 (2009). 10.1103/PhysRevE.80.011922
-
(2009)
Phys. Rev. e
, vol.80
, pp. 011922
-
-
Derr, J.1
Hopper, J.T.2
Sain, A.3
Rutenberg, A.D.4
-
36
-
-
70350224591
-
-
To simplify the notation, we use the term monomer throughout this paper, even though the original model as well as experiments suggests a polymer formed of dimers.
-
To simplify the notation, we use the term monomer throughout this paper, even though the original model as well as experiments suggests a polymer formed of dimers.
-
-
-
-
37
-
-
70350224590
-
-
Derr recently examined an alternate model for MinE "ring" formation that does not require MinE polymerization. Although testing it in the full MinD polymer model is still required, this might remove the requirement of assuming MinE polymerization
-
Derr recently examined an alternate model for MinE "ring" formation that does not require MinE polymerization. Although testing it in the full MinD polymer model is still required, this might remove the requirement of assuming MinE polymerization.
-
-
-
-
38
-
-
70350232417
-
-
For high total MinD concentrations, lmax can come close to L, i.e., the D-polymer would cover the whole cell from pole to pole. To avoid further assumptions on what happens if a polymer hits the opposite cell wall, we restrict ourselves here to total MinD concentrations that make these events very unlikely or impossible. With the parameters from Table this means we consider maximal total MinD concentrations of around 5μM. In the simulations, the polymer simply stops growing in the unlikely case that it reaches the opposite cell wall.
-
For high total MinD concentrations, lmax can come close to L, i.e., the D-polymer would cover the whole cell from pole to pole. To avoid further assumptions on what happens if a polymer hits the opposite cell wall, we restrict ourselves here to total MinD concentrations that make these events very unlikely or impossible. With the parameters from Table, this means we consider maximal total MinD concentrations of around 5μM. In the simulations, the polymer simply stops growing in the unlikely case that it reaches the opposite cell wall.
-
-
-
-
39
-
-
70350219611
-
-
A simple Euler-forward routine (time step 10-4 s) was used to solve the differential equations. To reduce error in averages and to get smooth distributions, typically, simulations were run for 106 - 108 s of simulated time (i.e., roughly 2× 104 -2× 106 capping events).
-
A simple Euler-forward routine (time step 10-4 s) was used to solve the differential equations. To reduce error in averages and to get smooth distributions, typically, simulations were run for 106 - 108 s of simulated time (i.e., roughly 2× 104 -2× 106 capping events).
-
-
-
-
40
-
-
70350239125
-
-
If the capping occurs while the E-polymer on the opposite side still has its steady state length lE,ss, our model predicts a second E-ring of length zero. According to our model equations, the E-polymer could nucleate (stochastically) but the deterministic growth equation does not support an elongation because cE is at the critical concentration for elongation due to the presence of the other E-ring. A more detailed model would incorporate stochastic effects in the growth and shrinking of the E- (and DE-) polymer.
-
If the capping occurs while the E-polymer on the opposite side still has its steady state length lE,ss, our model predicts a second E-ring of length zero. According to our model equations, the E-polymer could nucleate (stochastically) but the deterministic growth equation does not support an elongation because cE is at the critical concentration for elongation due to the presence of the other E-ring. A more detailed model would incorporate stochastic effects in the growth and shrinking of the E- (and DE-) polymer.
-
-
-
-
41
-
-
70350224589
-
-
In the opposite case (stochastic nucleation and deterministic capping), the transitions are not observed. In this case, if the regular oscillation pattern is violated and a D-polymer nucleates very late, cE > cE,th, and the D-polymer as well as all following D-polymers will be capped right away.
-
In the opposite case (stochastic nucleation and deterministic capping), the transitions are not observed. In this case, if the regular oscillation pattern is violated and a D-polymer nucleates very late, cE > cE,th, and the D-polymer as well as all following D-polymers will be capped right away.
-
-
-
-
42
-
-
70350232418
-
-
To numerically compute the integrals, 5000 discrete mesh points were used over the interval 0...L. After each integration, the distribution is normalized.
-
To numerically compute the integrals, 5000 discrete mesh points were used over the interval 0...L. After each integration, the distribution is normalized.
-
-
-
|