메뉴 건너뛰기




Volumn 33, Issue 3, 2009, Pages 245-259

Identifying learners robust to low quality data

Author keywords

Class imbalance; Quality of data; Random forest; Robust learning

Indexed keywords

CLASS DISTRIBUTIONS; CLASS IMBALANCE; CLASSIFICATION ALGORITHM; CLASSIFICATION MODELS; CLASSIFICATION PERFORMANCE; DATA SETS; ENSEMBLE LEARNING; IMBALANCED DATA; INDEPENDENT VARIABLES; LEARNING TECHNIQUES; LOW QUALITIES; MEASUREMENT DATA; NEGATIVE IMPACTS; NOISY DATA; PERFORMANCE METRICS; QUALITY OF DATA; RANDOM FOREST; RANDOM FORESTS; REAL WORLD ENVIRONMENTS; ROBUST LEARNING; ROBUST PERFORMANCE; SOFTWARE MEASUREMENT; SOFTWARE MEASUREMENT DATA;

EID: 70350142137     PISSN: 03505596     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (21)

References (35)
  • 1
    • 0004267735 scopus 로고    scopus 로고
    • Kluwer Academic Publishers, Norwell, MA, USA
    • D. W. Aha. Lazy learning. Kluwer Academic Publishers, Norwell, MA, USA, 1997.
    • (1997) Lazy Learning
    • Aha, D.W.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman., L.1
  • 13
    • 24144464528 scopus 로고    scopus 로고
    • Good practice in retail credit scorecard assessment
    • D. J. Hand. Good practice in retail credit scorecard assessment. Journal of the Operational Research Society, 56:1109-1117, 2005.
    • (2005) Journal of the Operational Research Society , vol.56 , pp. 1109-1117
    • Hand., D.J.1
  • 17
    • 14844337488 scopus 로고    scopus 로고
    • The necessity of assuring quality in software measurement data
    • Proceedings - 10th International Symposium on Software Metrics, METRICS 2004
    • T. M. Khoshgoftaar and N. Seliya. The necessity of assuring quality in software measurement data. In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society. (Pubitemid 40338154)
    • (2004) Proceedings - International Software Metrics Symposium , pp. 119-130
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 21
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • J. Moody and C. J. Darken. Fast learning in networks of locally tuned processing units. Neural Computation, 1(2):281-294, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken., C.J.2
  • 22
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett., T.2
  • 24
    • 0003798627 scopus 로고    scopus 로고
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. MIT Press, Cambridge, Massachusetts
    • B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, Massachusetts, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning
  • 25
    • 51949098422 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic Advised by T. M. Khoshgoftaar University, Boca Raton, FL USA, May
    • J. Van Hulse. Data quality in data mining and machine learning. Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL USA, May 2007. Advised by T. M. Khoshgoftaar.
    • (2007) Data Quality in Data Mining and Machine Learning
    • Van Hulse, J.1
  • 27
    • 33947404760 scopus 로고    scopus 로고
    • The pairwise attribute noise detection algorithm
    • Special Issue on Mining Low Quality Data
    • J. Van Hulse, T. M. Khoshgoftaar, and H. Huang. The pairwise attribute noise detection algorithm. Knowledge and Information Systems Journal, Special Issue on Mining Low Quality Data, 11(2):171-190, 2007.
    • (2007) Knowledge and Information Systems Journal , vol.11 , Issue.2 , pp. 171-190
    • Van Hulse, J.1    Khoshgoftaar, T.M.2    Huang., H.3
  • 30
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M. Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19:315-354, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost., F.2
  • 32
    • 19544372918 scopus 로고    scopus 로고
    • A quantitative study of their impacts
    • Class noise vs attribute noise: November
    • X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22(3-4):177-210, November 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3-4 , pp. 177-210
    • Zhu, X.1    Wu., X.2
  • 33


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.