-
1
-
-
0004267735
-
-
Kluwer Academic Publishers, Norwell, MA, USA
-
D. W. Aha. Lazy learning. Kluwer Academic Publishers, Norwell, MA, USA, 1997.
-
(1997)
Lazy Learning
-
-
Aha, D.W.1
-
3
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman., L.1
-
4
-
-
0003802343
-
-
Chapman and Hall/CRC Press, Boca Raton, FL
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Chapman and Hall/CRC Press, Boca Raton, FL, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone., C.4
-
11
-
-
51949113080
-
Identifying learners robust to low quality data
-
July
-
A. Folleco, T. M. Khoshgoftaar, J. Van Hulse, and L. Bullard. Identifying learners robust to low quality data. In Proceedings of the IEEE International Conference on Information Reuse and Integration- IRI'08, pages 190-195, July 2008.
-
(2008)
Proceedings of the IEEE International Conference on Information Reuse and Integration- IRI'08
, pp. 190-195
-
-
Folleco, A.1
Khoshgoftaar, T.M.2
Van Hulse, J.3
Bullard., L.4
-
12
-
-
70350156091
-
Naive bayes for regression
-
E. Frank, L. Trigg, G. Holmes, and I. Witten. Naive bayes for regression. Machine Learning, pages 1-20, 2000.
-
(2000)
Machine Learning
, pp. 1-20
-
-
Frank, E.1
Trigg, L.2
Holmes, G.3
Witten., I.4
-
13
-
-
24144464528
-
Good practice in retail credit scorecard assessment
-
D. J. Hand. Good practice in retail credit scorecard assessment. Journal of the Operational Research Society, 56:1109-1117, 2005.
-
(2005)
Journal of the Operational Research Society
, vol.56
, pp. 1109-1117
-
-
Hand., D.J.1
-
15
-
-
48649089002
-
An empirical study of learning from imbalanced data using random forest
-
Patras, Greece, October
-
T. M. Khoshgoftaar, M. Golawala, and J. Van Hulse. An empirical study of learning from imbalanced data using random forest. In Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence, pages 310-317, Patras, Greece, October 2007.
-
(2007)
Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence
, pp. 310-317
-
-
Khoshgoftaar, T.M.1
Golawala, M.2
Van, J.Hulse.3
-
16
-
-
33644969450
-
Detecting noisy instances with the ensemble filter: A study in software quality estimation
-
T. M. Khoshgoftaar, V. Joshi, and N. Seliya. Detecting noisy instances with the ensemble filter: A study in software quality estimation. International Journal of Software Engineering and Knowledge Engineering, 16(1):1-24, 2006.
-
(2006)
International Journal of Software Engineering and Knowledge Engineering
, vol.16
, Issue.1
, pp. 1-24
-
-
Khoshgoftaar, T.M.1
Joshi, V.2
Seliya., N.3
-
17
-
-
14844337488
-
The necessity of assuring quality in software measurement data
-
Proceedings - 10th International Symposium on Software Metrics, METRICS 2004
-
T. M. Khoshgoftaar and N. Seliya. The necessity of assuring quality in software measurement data. In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society. (Pubitemid 40338154)
-
(2004)
Proceedings - International Software Metrics Symposium
, pp. 119-130
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
-
18
-
-
33645896241
-
Detecting noisy instances with the rule-based classification model
-
T. M. Khoshgoftaar, N. Seliya, and K. Gao. Detecting noisy instances with the rule-based classification model. Intelligent Data Analysis:An International Journal, 9(4):347-364, 2005.
-
(2005)
Intelligent Data Analysis: An International Journal
, vol.9
, Issue.4
, pp. 347-364
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
Gao., K.3
-
21
-
-
0000672424
-
Fast learning in networks of locally tuned processing units
-
J. Moody and C. J. Darken. Fast learning in networks of locally tuned processing units. Neural Computation, 1(2):281-294, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.2
, pp. 281-294
-
-
Moody, J.1
Darken., C.J.2
-
22
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett. Robust classification for imprecise environments. Machine Learning, 42:203-231, 2001.
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett., T.2
-
24
-
-
0003798627
-
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. MIT Press, Cambridge, Massachusetts
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, Massachusetts, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
-
-
-
25
-
-
51949098422
-
-
Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic Advised by T. M. Khoshgoftaar University, Boca Raton, FL USA, May
-
J. Van Hulse. Data quality in data mining and machine learning. Ph.D. Dissertation, Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL USA, May 2007. Advised by T. M. Khoshgoftaar.
-
(2007)
Data Quality in Data Mining and Machine Learning
-
-
Van Hulse, J.1
-
27
-
-
33947404760
-
The pairwise attribute noise detection algorithm
-
Special Issue on Mining Low Quality Data
-
J. Van Hulse, T. M. Khoshgoftaar, and H. Huang. The pairwise attribute noise detection algorithm. Knowledge and Information Systems Journal, Special Issue on Mining Low Quality Data, 11(2):171-190, 2007.
-
(2007)
Knowledge and Information Systems Journal
, vol.11
, Issue.2
, pp. 171-190
-
-
Van Hulse, J.1
Khoshgoftaar, T.M.2
Huang., H.3
-
30
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. M. Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19:315-354, 2003.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost., F.2
-
32
-
-
19544372918
-
A quantitative study of their impacts
-
Class noise vs attribute noise: November
-
X. Zhu and X. Wu. Class noise vs attribute noise: A quantitative study of their impacts. Artificial Intelligence Review, 22(3-4):177-210, November 2004.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.3-4
, pp. 177-210
-
-
Zhu, X.1
Wu., X.2
-
34
-
-
84880897165
-
An empirical study of the noise impact on cost-sensitive learning
-
X. Zhu, X. Wu, T. M. Khoshgoftaar, and Y. Shi. An empirical study of the noise impact on cost-sensitive learning. In International Joint Conference on Artifi- cial Intelligence, pages 1168-1174, 2007.
-
(2007)
International Joint Conference on Artificial Intelligence
, pp. 1168-1174
-
-
Zhu, X.1
Wu, X.2
Khoshgoftaar, T.M.3
Shi., Y.4
|