-
2
-
-
0028767777
-
-
Förster, S.; Khandpur, A. K.; Zhoa, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922.
-
(1994)
Macromolecules
, vol.27
, pp. 6922
-
-
Förster, S.1
Khandpur, A.K.2
Zhoa, J.3
Bates, F.S.4
Hamley, I.W.5
Ryan, A.J.6
Bras, W.7
-
5
-
-
10844221797
-
-
Le, J. D.; Pinto, Y.; Seeman, N. C.; Musier-Forsyth, K.; Taton, T. A.; Kiehl, R. A. Nano Lett. 2004, 4, 2343.
-
(2004)
Nano Lett.
, vol.4
, pp. 2343
-
-
Le, J.D.1
Pinto, Y.2
Seeman, N.C.3
Musier-Forsyth, K.4
Taton, T.A.5
Kiehl, R.A.6
-
6
-
-
0141534348
-
-
Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301, 1882.
-
(2003)
Science
, vol.301
, pp. 1882
-
-
Yan, H.1
Park, S.H.2
Finkelstein, G.3
Reif, J.H.4
LaBean, T.H.5
-
7
-
-
65249190093
-
-
Tong, W.; Wei, Y.; Armbrust, K. W.; Zimmt, M. B. Langmuir 2009, 25, 2913-23.
-
(2009)
Langmuir
, vol.25
, pp. 2913-23
-
-
Tong, W.1
Wei, Y.2
Armbrust, K.W.3
Zimmt, M.B.4
-
8
-
-
34250316184
-
-
For another study of 1,5-bis-(aliphatic ether)-anthracene on HOPG see
-
For another study of 1,5-bis-(aliphatic ether)-anthracene on HOPG see Pokrifchak, M.; Turner, T.; Pilgrim, I.; Johnston, M. R.; Hipps, K. W. J. Phys. Chem. C 2007, 111, 7735.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 7735
-
-
Pokrifchak, M.1
Turner, T.2
Pilgrim, I.3
Johnston, M.R.4
Hipps, K.W.5
-
9
-
-
0000727143
-
-
Stabel, A.; Heinz, R.; Rabe, J. P.; Wegner, G.; De Schryver, F. C.; Corens, D.; Dehaen, W.; Süling, C. J. Phys. Chem. 1995, 99, 8690.
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 8690
-
-
Stabel, A.1
Heinz, R.2
Rabe, J.P.3
Wegner, G.4
De Schryver, F.C.5
Corens, D.6
Dehaen, W.7
Süling, C.8
-
10
-
-
0035798006
-
-
Kaneda, Y.; Stawasz, M. E.; Sampson, D. L.; Parkinson, B. A. Langmuir 2001, 17, 6185.
-
(2001)
Langmuir
, vol.17
, pp. 6185
-
-
Kaneda, Y.1
Stawasz, M.E.2
Sampson, D.L.3
Parkinson, B.A.4
-
11
-
-
0141607205
-
-
Kim, K.; Plass, K. E.; Matzger, A. J. Langmuir 2003, 19, 7149.
-
(2003)
Langmuir
, vol.19
, pp. 7149
-
-
Kim, K.1
Plass, K.E.2
Matzger, A.J.3
-
12
-
-
20444398126
-
-
Lackinger, M.; Griessl, S.; Heckl, W. A.; Hietschold, M.; Flynn, G. W. Langmuir 2005, 21 (11), 4984.
-
(2005)
Langmuir
, vol.21
, Issue.11
, pp. 4984
-
-
Lackinger, M.1
Griessl, S.2
Heckl, W.A.3
Hietschold, M.4
Flynn, G.W.5
-
13
-
-
33745479824
-
-
Kampschulte, L.; Lackinger, M.; Maier, A. K.; Kishore, R. S. K.; Griessl, S.; Schmittel, M.; Heckl, W. M. J. Phys. Chem. B 2006, 110 (22), 10829.
-
(2006)
J. Phys. Chem. B
, vol.110
, Issue.22
, pp. 10829
-
-
Kampschulte, L.1
Lackinger, M.2
Maier, A.K.3
Kishore, R.S.K.4
Griessl, S.5
Schmittel, M.6
Heckl, W.M.7
-
14
-
-
33750067974
-
-
Wei, Y.; Tong, W.; Wise, C.; Wei, X.; Armbrust, K. W.; Zimmt, M. B. J. Am. Chem. Soc. 2006, 128, 13362.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 13362
-
-
Wei, Y.1
Tong, W.2
Wise, C.3
Wei, X.4
Armbrust, K.W.5
Zimmt, M.B.6
-
15
-
-
41549156126
-
-
Wei, Y.; Tong, W.; Zimmt, M. B. J. Am. Chem. Soc. 2008, 130, 3399.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 3399
-
-
Wei, Y.1
Tong, W.2
Zimmt, M.B.3
-
16
-
-
0001539478
-
-
Xu, X.; Tang, J.; Mao, B. W. Chem. Phys. Lett. 2000, 323, 209.
-
(2000)
Chem. Phys. Lett.
, vol.323
, pp. 209
-
-
Xu, X.1
Tang, J.2
Mao, B.W.3
-
17
-
-
34547314218
-
-
Kannappan, K.; Werblowsky, T. L.; Rim, K. T.; Berne, B. J.; Flynn, G. W. J. Phys. Chem. B 2007, 111, 6634.
-
(2007)
J. Phys. Chem. B
, vol.111
, pp. 6634
-
-
Kannappan, K.1
Werblowsky, T.L.2
Rim, K.T.3
Berne, B.J.4
Flynn, G.W.5
-
18
-
-
38149015487
-
-
Ilan, B.; Berne, B. J.; Flynn, G. W. J. Phys. Chem. C 2007, 111, 18243.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 18243
-
-
Ilan, B.1
Berne, B.J.2
Flynn, G.W.3
-
19
-
-
65249170864
-
-
Ilan, B.; Florio, G. M.; Werblowsky, T. L.; Müller, T.; Hybertsen, M. S.; Berne, B. J.; Flynn, G. W. J. Phys. Chem. C 2009, 113, 3641.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 3641
-
-
Ilan, B.1
Florio, G.M.2
Werblowsky, T.L.3
Müller, T.4
Hybertsen, M.S.5
Berne, B.J.6
Flynn, G.W.7
-
20
-
-
0000812764
-
-
Hentschke, R.; Schürmann, B. L.; Rabe, J. P. J. Chem. Phys. 1992, 96, 6213.
-
(1992)
J. Chem. Phys.
, vol.96
, pp. 6213
-
-
Hentschke, R.1
Schürmann, B.L.2
Rabe, J.P.3
-
22
-
-
0000068319
-
-
Cincotti, S.; Burda, J.; Hentschke, R.; Rabe, J. P. Phys. Rev. E 1995, 51, 2090.
-
(1995)
Phys. Rev. E
, vol.51
, pp. 2090
-
-
Cincotti, S.1
Burda, J.2
Hentschke, R.3
Rabe, J.P.4
-
23
-
-
0347579367
-
-
Krishnan, M.; Balasubramanian, S.; Clarke, S. Proc. Ind. Acad. Sci. 2003, 115, 663.
-
(2003)
Proc. Ind. Acad. Sci.
, vol.115
, pp. 663
-
-
Krishnan, M.1
Balasubramanian, S.2
Clarke, S.3
-
25
-
-
70350169360
-
-
Carbon 1 of the anthracene core is attached to a side chain. Carbon (and hydrogen) atoms along the exterior of the same benzene ring are numbered 2-4. Atoms 5-8 are interchanged with atoms 1-4 by rotation about the 2-fold symmetry axis aligned perpendicular to the anthracene plane
-
Carbon 1 of the anthracene core is attached to a side chain. Carbon (and hydrogen) atoms along the exterior of the same benzene ring are numbered 2-4. Atoms 5-8 are interchanged with atoms 1-4 by rotation about the 2-fold symmetry axis aligned perpendicular to the anthracene plane.
-
-
-
-
26
-
-
70350162373
-
-
Intermolecular interactions determine the lowest energy morphology provided that molecule-HOPG interactions do not vary significantly with morphology
-
Intermolecular interactions determine the lowest energy morphology provided that molecule-HOPG interactions do not vary significantly with morphology.
-
-
-
-
28
-
-
70350145720
-
-
Hyperchem 8.0, CyberChem, Inc., 1115 NW 4th Street Suite 2, Gainesville, FL 32601
-
Hyperchem 8.0, CyberChem, Inc., 1115 NW 4th Street Suite 2, Gainesville, FL 32601.
-
-
-
-
29
-
-
0842341771
-
-
Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.
-
(1985)
J. Am. Chem. Soc.
, vol.107
, pp. 3902
-
-
Dewar, M.J.S.1
Zoebisch, E.G.2
Healy, E.F.3
Stewart, J.J.P.4
-
30
-
-
70350148802
-
-
-3kcal/mol Å was not achieved for any minimization. The minimizations required 5-20 days depending on starting position and side chain length
-
-3kcal/mol Å was not achieved for any minimization. The minimizations required 5-20 days depending on starting position and side chain length.
-
-
-
-
31
-
-
70350155860
-
-
Shifting an interior anthracene more than 2 nm from the closest section edge eliminates its interactions with all other molecules in the section
-
Shifting an interior anthracene more than 2 nm from the closest section edge eliminates its interactions with all other molecules in the section.
-
-
-
-
32
-
-
70350176736
-
-
The factor of one half is required to partition the "vertical" extraction energy equally between the shifted molecule and its neighbors
-
The factor of one half is required to partition the "vertical" extraction energy equally between the shifted molecule and its neighbors.
-
-
-
-
33
-
-
70350173860
-
-
"Vertical extraction" of an anthracene disrupts two intratape contacts, two intertape contacts and two anthracene-anthracene contacts. The intratape, intertape, and An-An values listed in Table 2 are per contact. C-2-C packed tapes
-
2 groups in the adjacent tape.
-
-
-
-
34
-
-
70350192377
-
-
2. The b-axis lengths are nearly identical for C-2-C and H-2-H morphologies
-
2. The b-axis lengths are nearly identical for C-2-C and H-2-H morphologies.
-
-
-
-
35
-
-
70350143502
-
-
This analysis ignores entropic contributions
-
This analysis ignores entropic contributions.
-
-
-
-
36
-
-
70350153916
-
-
2 octape HB morphology is-18.39 kcal/mol (19.11 "vertical" extraction energy). SAE for the C-2-C and H-2-H morphologies are-15.94 and-16.92
-
2 octape HB morphology is-18.39 kcal/mol (19.11 "vertical" extraction energy). SAE for the C-2-C and H-2-H morphologies are-15.94 and-16.92.
-
-
-
-
37
-
-
70350148801
-
-
2 {-28.10,-27.67,-27.65 kcal/mol}. The simulations predict C-2-C as the major morphology of both compounds, in agreement with the experimental results. The simulations do not exhibit a detectable, intrinsic bias in favor of C-2-C, H-2-H, or HB morphology
-
2 {-28.10,-27.67,-27.65 kcal/mol}. The simulations predict C-2-C as the major morphology of both compounds, in agreement with the experimental results. The simulations do not exhibit a detectable, intrinsic bias in favor of C-2-C, H-2-H, or HB morphology.
-
-
-
-
38
-
-
70350192378
-
-
18assign the ether oxygen a charge of-0.281. The α-H charge is +0.066
-
18assign the ether oxygen a charge of-0.281. The α-H charge is +0.066.
-
-
-
-
39
-
-
70350180875
-
-
2 (average of 0.47 ( 0.05 kcal/mol for each of the 2-O-8′-O, 8-O-8′-O, and 2′-O-8-O interactions, where nonprime and prime numbers indicate oxygen side chain positions in adjacent tapes)
-
2 (average of 0.47 ( 0.05 kcal/mol for each of the 2-O-8′-O, 8-O-8′-O, and 2′-O-8-O interactions, where nonprime and prime numbers indicate oxygen side chain positions in adjacent tapes).
-
-
-
-
40
-
-
70350140471
-
-
2 of the adjacent tape. The mean calculated 2-O-3-H(An) separation ) 3.27 Å is larger than for the 8-O substituted compounds. Consequently, a 10-O is less effective than an 8-O at increasing the 2-O-3-H(An) Coulomb attraction and the An-An (H-2-H) stabilization
-
2 of the adjacent tape. The mean calculated 2-O-3-H(An) separation ) 3.27 Å is larger than for the 8-O substituted compounds. Consequently, a 10-O is less effective than an 8-O at increasing the 2-O-3-H(An) Coulomb attraction and the An-An (H-2-H) stabilization.
-
-
-
-
41
-
-
70350176735
-
-
Even chain length anthracene compounds are another potential way to form single morphology monolayers. These compounds spontaneously assemble ω↔2 packed AA* tapes, which then assemble into C-2-C monolayers. As a consequence of these tapes' highly jagged peripheries, ω↔2 intertape registration is the only AA* tape alignment that generates close packed monolayers
-
Even chain length anthracene compounds are another potential way to form single morphology monolayers. These compounds spontaneously assemble ω↔2 packed AA* tapes, which then assemble into C-2-C monolayers. As a consequence of these tapes' highly jagged peripheries, ω↔2 intertape registration is the only AA* tape alignment that generates close packed monolayers.
-
-
-
-
42
-
-
70350167244
-
-
Stabilizing interactions are shared between side chains, so these values are 1/2 those reported in Table 2
-
Stabilizing interactions are shared between side chains, so these values are 1/2 those reported in Table 2.
-
-
-
-
47
-
-
33751202432
-
-
Lavoie, S.; Mahieu, G.; McBreen, P. H. Angew. Chem., Int. Ed. 2006, 45, 7404.
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 7404
-
-
Lavoie, S.1
Mahieu, G.2
McBreen, P.H.3
|