메뉴 건너뛰기




Volumn 10, Issue 1, 2010, Pages 125-134

Two fault detection and isolation schemes for robot manipulators using soft computing techniques

Author keywords

Fault detection and isolation; M ANFIS; Neural networks; Robot manipulators

Indexed keywords

DATA COLLECTION; FAULT DETECTION AND ISOLATION; FAULT DETECTION AND ISOLATION SCHEMES; M-ANFIS; MOBILE MANIPULATOR; MODEL-BASED; MODERN CONTROL; PLANAR MANIPULATOR; RESEARCH AREAS; RESIDUAL SIGNALS; ROBOT MANIPULATOR; ROBOT MANIPULATORS; ROBOT MODEL; ROBOT MODELLING; SIMULATION RESULT; SOFTCOMPUTING TECHNIQUES; TWO-LINK;

EID: 70350116152     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2009.06.011     Document Type: Article
Times cited : (34)

References (28)
  • 1
    • 0031148456 scopus 로고    scopus 로고
    • Trends in the application of model-based fault detection and diagnosis of technical processes
    • Isermann R., and Ballé P. Trends in the application of model-based fault detection and diagnosis of technical processes. Control Eng. Pract. 5 5 (1997) 709-719
    • (1997) Control Eng. Pract. , vol.5 , Issue.5 , pp. 709-719
    • Isermann, R.1    Ballé, P.2
  • 4
    • 0004194704 scopus 로고    scopus 로고
    • Patton R.J., Frank P.M., and Clark R.N. (Eds), Springer-Verlag
    • In: Patton R.J., Frank P.M., and Clark R.N. (Eds). Issues Of Fault Diagnosis For Dynamic Systems (2000), Springer-Verlag
    • (2000) Issues Of Fault Diagnosis For Dynamic Systems
  • 5
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis part III: process history based methods
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N., and Yin K. A review of process fault detection and diagnosis part III: process history based methods. Comput. Chem. Eng. 27 (2003) 327-346
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 6
    • 0031378596 scopus 로고    scopus 로고
    • Survey of robust residual generation and evaluation methods in observer-based fault detection systems
    • Frank P.M., and Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Proc. Cont. 7 6 (1997) 403-424
    • (1997) J. Proc. Cont. , vol.7 , Issue.6 , pp. 403-424
    • Frank, P.M.1    Ding, X.2
  • 7
    • 0021455782 scopus 로고
    • Analytical redundancy and the design of robust failure detection system
    • Chow E.Y., and Willsky A.S. Analytical redundancy and the design of robust failure detection system. IEEE Trans. Autom. Control 29 7 (1984) 603-614
    • (1984) IEEE Trans. Autom. Control , vol.29 , Issue.7 , pp. 603-614
    • Chow, E.Y.1    Willsky, A.S.2
  • 8
    • 0034297534 scopus 로고    scopus 로고
    • Application of model based fault detection to a brushless dc motor
    • Moseler O., and Isermann R. Application of model based fault detection to a brushless dc motor. IEEE Trans. Ind. Electron. 47 5 (2000) 1015-1020
    • (2000) IEEE Trans. Ind. Electron. , vol.47 , Issue.5 , pp. 1015-1020
    • Moseler, O.1    Isermann, R.2
  • 9
    • 0342762071 scopus 로고    scopus 로고
    • Deterministic nonlinear observer-based approaches to fault diagnosis: a survey
    • Garcia E.A., and Frank P.M. Deterministic nonlinear observer-based approaches to fault diagnosis: a survey. Control Eng. Pract. 5 5 (1997) 663-670
    • (1997) Control Eng. Pract. , vol.5 , Issue.5 , pp. 663-670
    • Garcia, E.A.1    Frank, P.M.2
  • 10
  • 11
    • 0030646591 scopus 로고    scopus 로고
    • Fuzzy logic and neural network applications to fault diagnosis
    • Frank P.M., and Koppen-Seliger B. Fuzzy logic and neural network applications to fault diagnosis. Int. J. Approx. Reasoning 16 (1997) 67-88
    • (1997) Int. J. Approx. Reasoning , vol.16 , pp. 67-88
    • Frank, P.M.1    Koppen-Seliger, B.2
  • 12
    • 27944432480 scopus 로고    scopus 로고
    • Fault diagnosis of induction motors with dynamical neural networks
    • Lehtoranta J., and Koivo H.N. Fault diagnosis of induction motors with dynamical neural networks. IEEE Int. Conf. Syst. Man Cybernet. 3 (2005) 2979-2984
    • (2005) IEEE Int. Conf. Syst. Man Cybernet. , vol.3 , pp. 2979-2984
    • Lehtoranta, J.1    Koivo, H.N.2
  • 13
    • 0007917986 scopus 로고    scopus 로고
    • Soft computing approaches to fault diagnosis for dynamic systems: a survey
    • Patton R.J., Uppal F.J., and Lopez-Tribio C.J. Soft computing approaches to fault diagnosis for dynamic systems: a survey. IFAC Symposium SAFEPROCESS (2000) 298-311
    • (2000) IFAC Symposium SAFEPROCESS , pp. 298-311
    • Patton, R.J.1    Uppal, F.J.2    Lopez-Tribio, C.J.3
  • 15
    • 0032021416 scopus 로고    scopus 로고
    • On fuzzy logic applications for automatic control, supervision, and fault diagnosis
    • Isermann R. On fuzzy logic applications for automatic control, supervision, and fault diagnosis. IEEE Trans. Syst. Man Cybernet. Part A: Syst. Hum. 28 2 (1998) 221-235
    • (1998) IEEE Trans. Syst. Man Cybernet. Part A: Syst. Hum. , vol.28 , Issue.2 , pp. 221-235
    • Isermann, R.1
  • 16
    • 0030691638 scopus 로고    scopus 로고
    • Observer-based fault detection for robot manipulators
    • Caccavale F., and Walker I.D. Observer-based fault detection for robot manipulators. IEEE Int. Conf. Rob. Autom. (1997) 2881-2887
    • (1997) IEEE Int. Conf. Rob. Autom. , pp. 2881-2887
    • Caccavale, F.1    Walker, I.D.2
  • 17
    • 0030151149 scopus 로고    scopus 로고
    • Observer based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation
    • Schneider H., and Frank P.M. Observer based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation. IEEE Trans. Control Syst. Technol. 4 3 (1996) 274-282
    • (1996) IEEE Trans. Control Syst. Technol. , vol.4 , Issue.3 , pp. 274-282
    • Schneider, H.1    Frank, P.M.2
  • 19
    • 85087240576 scopus 로고    scopus 로고
    • An adapt-and-detect actuator FDI for robot manipulators
    • De Luca A., and Mattone R. An adapt-and-detect actuator FDI for robot manipulators. IEEE Int. Conf. Rob. Autom. (2004) 879-884
    • (2004) IEEE Int. Conf. Rob. Autom. , pp. 879-884
    • De Luca, A.1    Mattone, R.2
  • 20
    • 0034471007 scopus 로고    scopus 로고
    • Fault detection for robot manipulators with parametric uncertainty: a prediction-error-based approach
    • Dixon W.E., Walker I.D., Dawson D.M., and Hartranft J.P. Fault detection for robot manipulators with parametric uncertainty: a prediction-error-based approach. IEEE Trans. Rob. Autom. 16 6 (2000) 689-699
    • (2000) IEEE Trans. Rob. Autom. , vol.16 , Issue.6 , pp. 689-699
    • Dixon, W.E.1    Walker, I.D.2    Dawson, D.M.3    Hartranft, J.P.4
  • 22
    • 0030375816 scopus 로고    scopus 로고
    • A neural network application to fault diagnosis for robotic manipulator
    • Naughton J.M., Chen Y.C., and Jiang J. A neural network application to fault diagnosis for robotic manipulator. IEEE Int. Conf. Control Appl. (1996) 988-993
    • (1996) IEEE Int. Conf. Control Appl. , pp. 988-993
    • Naughton, J.M.1    Chen, Y.C.2    Jiang, J.3
  • 23
    • 0031269483 scopus 로고    scopus 로고
    • Neural-network-based robust fault diagnosis in robotic systems
    • Vemuri A.T., and Polycarpou M.M. Neural-network-based robust fault diagnosis in robotic systems. IEEE Trans. Neural Netw. 8 6 (1997) 1410-1420
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.6 , pp. 1410-1420
    • Vemuri, A.T.1    Polycarpou, M.M.2
  • 24
    • 0035399310 scopus 로고    scopus 로고
    • Fault detection and isolation in robotic manipulators via neural networks: a comparison among three architectures for residual analysis
    • Terra M.H., and Tinos R. Fault detection and isolation in robotic manipulators via neural networks: a comparison among three architectures for residual analysis. J. Rob. Syst. 18 7 (2001) 357-374
    • (2001) J. Rob. Syst. , vol.18 , Issue.7 , pp. 357-374
    • Terra, M.H.1    Tinos, R.2
  • 27
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: the RPROP algorithm
    • Riedmiller M., and Braun H. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. IEEE Int. Conf. Neural Netw. 1 (1993) 586-591
    • (1993) IEEE Int. Conf. Neural Netw. , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.