메뉴 건너뛰기




Volumn 80, Issue 4, 2009, Pages

Negative specific heat in self-gravitating N -body systems enclosed in a spherical container with reflecting walls

Author keywords

[No Author keywords available]

Indexed keywords

ADIABATIC WALL; COOLING RATES; DENSITY PROFILE; ENERGY LOSS; LOCAL VELOCITY; LOW ENERGY REGIONS; MICROCANONICAL ENSEMBLES; N-BODY SIMULATION; N-BODY SYSTEM; NON-ADIABATIC; NON-EQUILIBRIUM PROCESS; POLYTROPE; RAPID CHANGES; REFLECTING WALLS; SELF-GRAVITATING SYSTEMS;

EID: 70350057277     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.80.041107     Document Type: Article
Times cited : (13)

References (51)
  • 1
    • 70350041318 scopus 로고
    • IAU Symposium Vol. edited by J. Goodman and P. Hut (Reidel, Dordrecht
    • V. A. Antonov, in Dynamics of Globular Clusters, IAU Symposium Vol. 113, edited by, J. Goodman, and, P. Hut, (Reidel, Dordrecht, 1985)
    • (1985) Dynamics of Globular Clusters , vol.113
    • Antonov, V.A.1
  • 4
    • 36949051230 scopus 로고
    • 10.1038/248030a0
    • S. W. Hawking, Nature (London) 248, 30 (1974). 10.1038/248030a0
    • (1974) Nature (London) , vol.248 , pp. 30
    • Hawking, S.W.1
  • 5
    • 4244058578 scopus 로고
    • 10.1103/PhysRevD.9.3292
    • J. D. Bekenstein, Phys. Rev. D 9, 3292 (1974). 10.1103/PhysRevD.9.3292
    • (1974) Phys. Rev. D , vol.9 , pp. 3292
    • Bekenstein, J.D.1
  • 7
    • 34250487879 scopus 로고
    • 10.1007/BF01403177
    • W. Thirring, Z. Phys. 235, 339 (1970). 10.1007/BF01403177
    • (1970) Z. Phys. , vol.235 , pp. 339
    • Thirring, W.1
  • 9
    • 33646516485 scopus 로고
    • 10.1007/BF01016429
    • C. Tsallis, J. Stat. Phys. 52, 479 (1988). 10.1007/BF01016429
    • (1988) J. Stat. Phys. , vol.52 , pp. 479
    • Tsallis, C.1
  • 11
    • 0000034685 scopus 로고
    • 10.1016/0370-1573(90)90051-3
    • T. Padmanabhan, Phys. Rep. 188, 285 (1990). 10.1016/0370-1573(90)90051-3
    • (1990) Phys. Rep. , vol.188 , pp. 285
    • Padmanabhan, T.1
  • 13
  • 15
    • 0347244489 scopus 로고    scopus 로고
    • 10.1016/S0375-9601(99)00745-8
    • S. Abe, Phys. Lett. A 263, 424 (1999). 10.1016/S0375-9601(99)00745-8
    • (1999) Phys. Lett. A , vol.263 , pp. 424
    • Abe, S.1
  • 17
    • 0034205384 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.61.6270
    • E. Follana and V. Laliena, Phys. Rev. E 61, 6270 (2000). 10.1103/PhysRevE.61.6270
    • (2000) Phys. Rev. e , vol.61 , pp. 6270
    • Follana, E.1    Laliena, V.2
  • 19
  • 20
    • 4243271531 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.64.056103
    • I. Ispolatov and E. G. D. Cohen, Phys. Rev. E 64, 056103 (2001). 10.1103/PhysRevE.64.056103
    • (2001) Phys. Rev. e , vol.64 , pp. 056103
    • Ispolatov, I.1    Cohen, E.G.D.2
  • 22
    • 37649031345 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.66.036109
    • P. H. Chavanis and I. Ispolatov, Phys. Rev. E 66, 036109 (2002). 10.1103/PhysRevE.66.036109
    • (2002) Phys. Rev. e , vol.66 , pp. 036109
    • Chavanis, P.H.1    Ispolatov, I.2
  • 23
    • 0038450091 scopus 로고    scopus 로고
    • 10.1016/S0375-9601(03)00858-2
    • R. Silva and J. S. Alcaniz, Phys. Lett. A 313, 393 (2003). 10.1016/S0375-9601(03)00858-2
    • (2003) Phys. Lett. A , vol.313 , pp. 393
    • Silva, R.1    Alcaniz, J.S.2
  • 24
    • 0038271919 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.90.181101
    • A. Taruya and M. Sakagami, Phys. Rev. Lett. 90, 181101 (2003). 10.1103/PhysRevLett.90.181101
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 181101
    • Taruya, A.1    Sakagami, M.2
  • 31
    • 14844303779 scopus 로고    scopus 로고
    • 10.1051/0004-6361:20041114
    • P. H. Chavanis, Astron. Astrophys. 432, 117 (2005). 10.1051/0004-6361: 20041114
    • (2005) Astron. Astrophys. , vol.432 , pp. 117
    • Chavanis, P.H.1
  • 34
    • 29144479370 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.95.251101
    • H. A. Posch and W. Thirring, Phys. Rev. Lett. 95, 251101 (2005). 10.1103/PhysRevLett.95.251101
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 251101
    • Posch, H.A.1    Thirring, W.2
  • 35
    • 33750698605 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.74.051103
    • H. A. Posch and W. Thirring, Phys. Rev. E 74, 051103 (2006). 10.1103/PhysRevE.74.051103
    • (2006) Phys. Rev. e , vol.74 , pp. 051103
    • Posch, H.A.1    Thirring, W.2
  • 36
    • 0034598618 scopus 로고    scopus 로고
    • 10.1016/S0370-2693(99)01486-0
    • M. D'Agostino, Phys. Lett. B 473, 219 (2000). 10.1016/S0370-2693(99) 01486-0
    • (2000) Phys. Lett. B , vol.473 , pp. 219
    • D'Agostino, M.1
  • 41
    • 70350072111 scopus 로고    scopus 로고
    • Abstracts of Symposium Yukawa International Seminars (YKIS 2009), Kyoto, Japan (2009) (http://www2.yukawa.kyoto-u.ac.jp/~ykis2009/sympo-abstracts/ komatsu.pdf);
    • N. Komatsu, S. Kimura, and T. Kiwata, Abstracts of Symposium Yukawa International Seminars (YKIS 2009), Kyoto, Japan (2009) (http://www2.yukawa. kyoto-u.ac.jp/~ykis2009/sympo-abstracts/komatsu.pdf)
    • Komatsu, N.1    Kimura, S.2    Kiwata, T.3
  • 42
    • 70350072113 scopus 로고    scopus 로고
    • Abstracts of Mathematical Aspects of Generalized Entropies and Their Applications (Kyoto RIMS Workshop), pp. 9, Kyoto, Japan (2009) (to be published).
    • Abstracts of Mathematical Aspects of Generalized Entropies and Their Applications (Kyoto RIMS Workshop), pp. 9, Kyoto, Japan (2009) (to be published).
  • 43
    • 70350052559 scopus 로고    scopus 로고
    • If we examine energy loss by radiation in stars, a simple method such as reduction of all the velocities should be more suitable to mimic the energy loss. However, we employ the nonadiabatic wall to mimic energy loss by reflecting walls for certain nonequilibrium processes. This is because we examine the influence of the nonadiabatic wall on dynamical evolutions of the system especially on thermodynamic properties such as the incidence of negative specific heat.
    • If we examine energy loss by radiation in stars, a simple method such as reduction of all the velocities should be more suitable to mimic the energy loss. However, we employ the nonadiabatic wall to mimic energy loss by reflecting walls for certain nonequilibrium processes. This is because we examine the influence of the nonadiabatic wall on dynamical evolutions of the system especially on thermodynamic properties such as the incidence of negative specific heat.
  • 44
    • 70350041317 scopus 로고    scopus 로고
    • To mimic an inelastic wall and to decrease a variation in total angular momentum, a method which reduces only the radial component of the reflected velocity would be better than the present method. However, we employ the present method, since the present method can sufficiently mimic energy loss by nonadiabatic walls.
    • To mimic an inelastic wall and to decrease a variation in total angular momentum, a method which reduces only the radial component of the reflected velocity would be better than the present method. However, we employ the present method, since the present method can sufficiently mimic energy loss by nonadiabatic walls.
  • 46
    • 0242495207 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.68.036117
    • I. Ispolatov and M. Karttunen, Phys. Rev. E 68, 036117 (2003). 10.1103/PhysRevE.68.036117
    • (2003) Phys. Rev. e , vol.68 , pp. 036117
    • Ispolatov, I.1    Karttunen, M.2
  • 47
    • 42749099416 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.70.026102
    • I. Ispolatov and M. Karttunen, Phys. Rev. E 70, 026102 (2004). 10.1103/PhysRevE.70.026102
    • (2004) Phys. Rev. e , vol.70 , pp. 026102
    • Ispolatov, I.1    Karttunen, M.2
  • 49
    • 70350054619 scopus 로고    scopus 로고
    • Although this result should be predictable qualitatively, the influence of the nonadiabatic wall is clearly demonstrated quantitatively in the present study.
    • Although this result should be predictable qualitatively, the influence of the nonadiabatic wall is clearly demonstrated quantitatively in the present study.
  • 51
    • 70350052572 scopus 로고    scopus 로고
    • note
    • If a particle does not exist in the innermost shell, the value in the innermost shell is 0. In fact, the smallest volume of the innermost shell should cause a high incidence of a 0 value, when the density is low. Consequently, the shell-averaged value for the innermost shell includes large fluctuations or errors through our average operation. Similar things should arise in the outermost shell. Therefore, we do not discuss the shell-averaged values in the innermost and outermost shells, since these results are misleading.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.