-
2
-
-
0002019758
-
Hidden truncation models
-
Arnold, B. C. and Beaver, R. J. (2000). Hidden truncation models. Sankhyā A 62, 23-35.
-
(2000)
Sankhyā A
, vol.62
, pp. 23-35
-
-
Arnold, B.C.1
Beaver, R.J.2
-
3
-
-
33750567672
-
Characterizations of the skew-normal and generalized chi distributions
-
Arnold, B. C. and Lin, G. D. (2004). Characterizations of the skew-normal and generalized chi distributions. Sankhy 66, 593-606.
-
(2004)
Sankhy
, vol.66
, pp. 593-606
-
-
Arnold, B.C.1
Lin, G.D.2
-
4
-
-
0001036819
-
A class of distributions which includes the normal ones
-
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist. 12, 171-178.
-
(1985)
Scand. J. Statist.
, vol.12
, pp. 171-178
-
-
Azzalini, A.1
-
5
-
-
2442529871
-
Log-skew-normal and log-skew-t distributions as models for family income data
-
Azzalini, A., Dal Cappello, T. and Kotz, S. (2003). Log-skew-normal and log-skew-t distributions as models for family income data. J. Income Distribution 11, 12-20.
-
(2003)
J. Income Distribution
, vol.11
, pp. 12-20
-
-
Azzalini, A.1
Dal Cappello, T.2
Kotz, S.3
-
6
-
-
0001417140
-
The multivariate skew-normal distribution
-
Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83, 715-726.
-
(1996)
Biometrika
, vol.83
, pp. 715-726
-
-
Azzalini, A.1
Dalla Valle, A.2
-
7
-
-
48249088901
-
Use of log-skew-normal distribution in analysis of continuous data with discrete component at zero
-
Chai, H. S. and Bailey, K. R. (2008). Use of log-skew-normal distribution in analysis of continuous data with discrete component at zero. Statist. Med. 27, 3643-3655.
-
(2008)
Statist. Med.
, vol.27
, pp. 3643-3655
-
-
Chai, H.S.1
Bailey, K.R.2
-
8
-
-
0003498504
-
-
Academic Press, San Diego, CA.
-
Gradshteyn, I. S. and Ryzhik, I. M. (2000). Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego, CA.
-
(2000)
Tables of Integrals, Series, and Products, 6th Edn.
-
-
Gradshteyn, I.S.1
Ryzhik, I.M.2
-
9
-
-
0000811912
-
A probabilistic representation of the ?skew-normal' distribution
-
Henze, N. (1986). A probabilistic representation of the ?skew-normal' distribution. Scand. J. Statist. 13, 271-275.
-
(1986)
Scand. J. Statist.
, vol.13
, pp. 271-275
-
-
Henze, N.1
-
10
-
-
0000237092
-
On a property of the lognormal distribution
-
Heyde, C. C. (1963). On a property of the lognormal distribution. J. R. Statist. Soc. B 25, 392-393.
-
(1963)
J. R. Statist. Soc. B
, vol.25
, pp. 392-393
-
-
Heyde, C.C.1
-
11
-
-
0031571467
-
On the moment problems
-
Correction: 50 (2000), 205.
-
Lin, G. D. (1997). On the moment problems. Statist. Prob. Lett. 35, 85-90. (Correction: 50 (2000), 205.)
-
(1997)
Statist. Prob. Lett.
, vol.35
, pp. 85-90
-
-
Lin, G.D.1
-
12
-
-
0017282974
-
Bayes estimation subject to uncertainty about parameter constraints
-
O'Hagan,A. and Leonard, T. (1976). Bayes estimation subject to uncertainty about parameter constraints. Biometrika 63, 201-203.
-
(1976)
Biometrika
, vol.63
, pp. 201-203
-
-
O'Hagan, A.1
Leonard, T.2
-
13
-
-
0035579703
-
Criteria for the unique determination of probability distributions by moments
-
Pakes, A., Hung, W.-L. and Wu, J.-W. (2001). Criteria for the unique determination of probability distributions by moments. Austral. N. Z. J. Statist. 43, 101-111. (Pubitemid 33613433)
-
(2001)
Australian and New Zealand Journal of Statistics
, vol.43
, Issue.1
, pp. 101-111
-
-
Pakes, A.G.1
Hung, W.-L.2
Wu, J.-W.3
-
14
-
-
2642590729
-
Difficulties with the lognormal model in mean estimation and testing
-
Schmoyeri, R. L., Beauchamp, J. J., Brandt, C. C. and Hoffman, F. O. Jr. (1996). Difficulties with the lognormal model in mean estimation and testing. Environm. Ecol. Statist. 3, 81-97.
-
(1996)
Environm. Ecol. Statist.
, vol.3
, pp. 81-97
-
-
Schmoyeri, R.L.1
Beauchamp, J.J.2
Brandt, C.C.3
Hoffman Jr., F.O.4
-
15
-
-
0000848317
-
The moment problem for polynomial forms in normal random variables
-
Slud, E. V. (1993). The moment problem for polynomial forms in normal random variables. Ann. Prob. 21, 2200-2214.
-
(1993)
Ann. Prob.
, vol.21
, pp. 2200-2214
-
-
Slud, E.V.1
-
20
-
-
0012038363
-
Krein condition in probabilistic moment problems
-
Stoyanov, J. (2000). Krein condition in probabilistic moment problems. Bernoulli 6, 939-949.
-
(2000)
Bernoulli
, vol.6
, pp. 939-949
-
-
Stoyanov, J.1
-
21
-
-
4344576375
-
Stieltjes classes for moment-indeterminate probability distributions
-
DOI 10.1239/jap/1077134686
-
Stoyanov, J. (2004). Stieltjes classes for moment-indeterminate probability distributions. In Stochastic Methods and Their Applications (J. Appl. Prob. Spec. Vol. 41A), eds J. Gani and E. Seneta, Applied Probability Trust, Sheffield, pp. 281-294. (Pubitemid 44973185)
-
(2004)
Journal of Applied Probability
, vol.41 A
, Issue.SPEC. ISSUE
, pp. 281-294
-
-
Stoyanov, J.1
-
22
-
-
18144410206
-
Method for constructing Stieltjes classes for M indeterminate probability distributions
-
Stoyanov, J. and Tolmatz, L. (2005). Method for constructing Stieltjes classes for M indeterminate probability distributions. Appl. Math. Comput. 165, 669-685.
-
(2005)
Appl. Math. Comput.
, vol.165
, pp. 669-685
-
-
Stoyanov, J.1
Tolmatz, L.2
-
23
-
-
20044390944
-
The lognormal distribution is not an appropriate null hypothesis for the species-abundance distribution
-
Williamson, M. and Gaston, K. J. (2005). The lognormal distribution is not an appropriate null hypothesis for the species-abundance distribution. J. Animal Ecology 74, 409-422.
-
(2005)
J. Animal Ecology
, vol.74
, pp. 409-422
-
-
Williamson, M.1
Gaston, K.J.2
-
24
-
-
0000702030
-
Why oceanic dissipation rates are not lognormal?
-
Yamazaki, H. and Lueck, R. (1990). Why oceanic dissipation rates are not lognormal? J. Phys. Oceanography 20, 1907-1918.
-
(1990)
J. Phys. Oceanography
, vol.20
, pp. 1907-1918
-
-
Yamazaki, H.1
Lueck, R.2
|