메뉴 건너뛰기




Volumn 79, Issue 23, 2009, Pages 2415-2421

Covariance function of vector self-similar processes

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70350015368     PISSN: 01677152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spl.2009.08.015     Document Type: Article
Times cited : (42)

References (15)
  • 2
    • 34250593338 scopus 로고
    • Further uniqueness theorems for functional equations
    • Aczél J., and Hosszú M. Further uniqueness theorems for functional equations. Acta. Math. Acad. Sci. Hung. 16 (1965) 51-55
    • (1965) Acta. Math. Acad. Sci. Hung. , vol.16 , pp. 51-55
    • Aczél, J.1    Hosszú, M.2
  • 3
    • 0036003733 scopus 로고    scopus 로고
    • Sample means, sample autocovariances, and linear regression of stationary multivariate long memory processes
    • Chung C.-F. Sample means, sample autocovariances, and linear regression of stationary multivariate long memory processes. Econometric Theory 18 (2002) 51-78
    • (2002) Econometric Theory , vol.18 , pp. 51-78
    • Chung, C.-F.1
  • 4
    • 0034369699 scopus 로고    scopus 로고
    • The functional central limit theorem and weak convergence to stochastic integrals
    • Davidson J., and de Jong R.M. The functional central limit theorem and weak convergence to stochastic integrals. Econometric Theory 16 (2000) 643-666
    • (2000) Econometric Theory , vol.16 , pp. 643-666
    • Davidson, J.1    de Jong, R.M.2
  • 5
    • 35448997558 scopus 로고    scopus 로고
    • Alternative frequency and time domain versions of fractional Brownian motion
    • Davidson J., and Hashimadze N. Alternative frequency and time domain versions of fractional Brownian motion. Econometric Theory 24 (2008) 256-293
    • (2008) Econometric Theory , vol.24 , pp. 256-293
    • Davidson, J.1    Hashimadze, N.2
  • 6
    • 84863804053 scopus 로고    scopus 로고
    • Integral representations of operator fractional Brownian motion
    • Preprint
    • Didier, G., Pipiras, V., 2008. Integral representations of operator fractional Brownian motion. Preprint
    • (2008)
    • Didier, G.1    Pipiras, V.2
  • 7
    • 84968464325 scopus 로고
    • Operator-self-similar processes in a finite-dimensional space
    • Hudson W., and Mason J. Operator-self-similar processes in a finite-dimensional space. Trans. Amer. Math. Soc. 273 (1982) 281-297
    • (1982) Trans. Amer. Math. Soc. , vol.273 , pp. 281-297
    • Hudson, W.1    Mason, J.2
  • 9
    • 70350016024 scopus 로고    scopus 로고
    • Lavancier, F., Philippe, A., Surgailis, D., 2009. A two-sample test for comparison of long memory parameters. arXiv:0907.1787v1[math.ST]
    • Lavancier, F., Philippe, A., Surgailis, D., 2009. A two-sample test for comparison of long memory parameters. arXiv:0907.1787v1[math.ST]
  • 10
    • 0003341910 scopus 로고
    • Operator-self-similar stable processes
    • Maejima M., and Mason J. Operator-self-similar stable processes. Stochastic Proces. Appl. 54 (1994) 139-163
    • (1994) Stochastic Proces. Appl. , vol.54 , pp. 139-163
    • Maejima, M.1    Mason, J.2
  • 11
    • 0001124140 scopus 로고    scopus 로고
    • Weak convergence of multivariate fractional processes
    • Marinucci D., and Robinson P.M. Weak convergence of multivariate fractional processes. Stochastic Process. Appl. 86 (2000) 103-120
    • (2000) Stochastic Process. Appl. , vol.86 , pp. 103-120
    • Marinucci, D.1    Robinson, P.M.2
  • 12
    • 54349113803 scopus 로고    scopus 로고
    • Multiple local Whittle estimation in stationary systems
    • Robinson P.M. Multiple local Whittle estimation in stationary systems. Ann. Statist. 36 (2008) 2508-2530
    • (2008) Ann. Statist. , vol.36 , pp. 2508-2530
    • Robinson, P.M.1
  • 14
    • 0001027466 scopus 로고
    • Self-similar processes with independent increments
    • Sato K. Self-similar processes with independent increments. Probab. Theory Related Fields 89 (1991) 285-300
    • (1991) Probab. Theory Related Fields , vol.89 , pp. 285-300
    • Sato, K.1
  • 15
    • 30344440834 scopus 로고    scopus 로고
    • How rich is the class of multifractional Brownian motions?
    • Stoev S., and Taqqu M.S. How rich is the class of multifractional Brownian motions?. Stochastic Process. Appl. 11 (2006) 200-221
    • (2006) Stochastic Process. Appl. , vol.11 , pp. 200-221
    • Stoev, S.1    Taqqu, M.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.