-
1
-
-
0012135401
-
Long time behavior of the perfectly matched layer equations in computational electromagnetics
-
Abarbanel S, Gottlieb D, Hesthaven JS. Long time behavior of the perfectly matched layer equations in computational electromagnetics. J. Scient. Comput. 2002, 17(1-4):405-422.
-
(2002)
J. Scient. Comput.
, vol.17
, Issue.1-4
, pp. 405-422
-
-
Abarbanel, S.1
Gottlieb, D.2
Hesthaven, J.S.3
-
2
-
-
0036339907
-
On the analysis of Bérenger's perfectly matched layers for Maxwell's equations
-
Bécache E, Joly P. On the analysis of Bérenger's perfectly matched layers for Maxwell's equations. Math. Modell. Numer. Anal. 2002, 36(1):87-120.
-
(2002)
Math. Modell. Numer. Anal.
, vol.36
, Issue.1
, pp. 87-120
-
-
Bécache, E.1
Joly, P.2
-
4
-
-
28044459877
-
A perfectly matched layer for the absorption of electromagnetic waves
-
Bérenger JP. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114:185-200.
-
(1994)
J. Comput. Phys.
, vol.114
, pp. 185-200
-
-
Bérenger, J.P.1
-
5
-
-
0027334553
-
Seismic modeling in viscoelastic media
-
Carcione JM. Seismic modeling in viscoelastic media. Geophysics 1993, 58(1):110-120.
-
(1993)
Geophysics
, vol.58
, Issue.1
, pp. 110-120
-
-
Carcione, J.M.1
-
6
-
-
0004184258
-
-
2nd edn, Elsevier Science, Amsterdam, The Netherlands
-
Carcione JM. Wave Fields in Real Media: Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media 2007, 2nd edn, Elsevier Science, Amsterdam, The Netherlands
-
(2007)
Wave Fields in Real Media: Theory and Numerical Simulation of Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media
-
-
Carcione, J.M.1
-
7
-
-
0024221431
-
Wave propagation simulation in a linear viscoelastic medium
-
Carcione JM, Kosloff D, Kosloff R. Wave propagation simulation in a linear viscoelastic medium. Geophys. J. Int. 1988, 95:597-611.
-
(1988)
Geophys. J. Int.
, vol.95
, pp. 597-611
-
-
Carcione, J.M.1
Kosloff, D.2
Kosloff, R.3
-
8
-
-
0000402847
-
A nonreflecting boundary condition for discrete acoustic and elastic wave equation
-
Cerjan C, Kosloff D, Kosloff R, Reshef M. A nonreflecting boundary condition for discrete acoustic and elastic wave equation. Geophysics 1985, 50:705-708.
-
(1985)
Geophysics
, vol.50
, pp. 705-708
-
-
Cerjan, C.1
Kosloff, D.2
Kosloff, R.3
Reshef, M.4
-
9
-
-
0030444273
-
Perfectly matched layers for elastodynamics: a new absorbing boundary condition
-
Chew WC, Liu Q. Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comput. Acoust. 1996, 4(4):341-359.
-
(1996)
J. Comput. Acoust.
, vol.4
, Issue.4
, pp. 341-359
-
-
Chew, W.C.1
Liu, Q.2
-
10
-
-
0028498156
-
A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates
-
Chew WC, Weedon WH. A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microw. Opt. Technol. Lett. 1994, 7(13):599-604.
-
(1994)
Microw. Opt. Technol. Lett.
, vol.7
, Issue.13
, pp. 599-604
-
-
Chew, W.C.1
Weedon, W.H.2
-
11
-
-
0000681266
-
Absorbing boundary conditions for acoustic and elastic wave equations
-
Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. seism. Soc. Am. 1977, 67:1529-1540.
-
(1977)
Bull. seism. Soc. Am.
, vol.67
, pp. 1529-1540
-
-
Clayton, R.1
Engquist, B.2
-
12
-
-
19644366751
-
Mixed spectral finite elements for the linear elasticity system in unbounded domains
-
Cohen G, Fauqueux S. Mixed spectral finite elements for the linear elasticity system in unbounded domains. SIAM J. Scient. Comput. 2005, 26(3):864-884.
-
(2005)
SIAM J. Scient. Comput.
, vol.26
, Issue.3
, pp. 864-884
-
-
Cohen, G.1
Fauqueux, S.2
-
13
-
-
0032203675
-
The perfectly matched layer in curvilinear coordinates
-
Collino F, Monk P. The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 1998, 19(6):2061-2090.
-
(1998)
SIAM J. Sci. Comput.
, vol.19
, Issue.6
, pp. 2061-2090
-
-
Collino, F.1
Monk, P.2
-
14
-
-
0035071437
-
Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media
-
Collino F, Tsogka C. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 2001, 66(1):294-307.
-
(2001)
Geophysics
, vol.66
, Issue.1
, pp. 294-307
-
-
Collino, F.1
Tsogka, C.2
-
15
-
-
0003908527
-
Über die partiellen Differenzengleichungen der mathematischen Physik
-
Courant R, Friedrichs KO, Lewy H. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen 1928, 100:32-74.
-
(1928)
Mathematische Annalen
, vol.100
, pp. 32-74
-
-
Courant, R.1
Friedrichs, K.O.2
Lewy, H.3
-
16
-
-
24144490072
-
An eigenvalue decomposition method to construct absorbing boundary conditions for acoustic and elastic wave equations
-
Dong L, She D, Guan L, Ma Z. An eigenvalue decomposition method to construct absorbing boundary conditions for acoustic and elastic wave equations. J. geophys. Eng. 2005, 2:192-198.
-
(2005)
J. geophys. Eng.
, vol.2
, pp. 192-198
-
-
Dong, L.1
She, D.2
Guan, L.3
Ma, Z.4
-
17
-
-
33947156416
-
A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves
-
Drossaert FH, Giannopoulos A. A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves. Geophysics 2007, 72(2):T9-T17.
-
(2007)
Geophysics
, vol.72
, Issue.2
-
-
Drossaert, F.H.1
Giannopoulos, A.2
-
18
-
-
0023421286
-
Incorporation of attenuation into time-domain computations of seismic wave fields
-
Emmerich H, Korn M. Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysics 1987, 52:1252-1264.
-
(1987)
Geophysics
, vol.52
, pp. 1252-1264
-
-
Emmerich, H.1
Korn, M.2
-
19
-
-
84966208271
-
Absorbing boundary conditions for the numerical simulation of waves
-
Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 1977, 31:629-651.
-
(1977)
Math. Comp.
, vol.31
, pp. 629-651
-
-
Engquist, B.1
Majda, A.2
-
20
-
-
20444501406
-
The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral-element simulations of elastodynamics
-
Festa G, Vilotte JP. The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral-element simulations of elastodynamics. Geophys. J. Int. 2005, 161:789-812.
-
(2005)
Geophys. J. Int.
, vol.161
, pp. 789-812
-
-
Festa, G.1
Vilotte, J.P.2
-
21
-
-
28944437305
-
Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations
-
doi
-
Festa G, Delavaud E, Vilotte JP. Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations. Geophys. Res. Lett. 2005, 32(20):L20306. doi
-
(2005)
Geophys. Res. Lett.
, vol.32
, Issue.20
-
-
Festa, G.1
Delavaud, E.2
Vilotte, J.P.3
-
22
-
-
0003019242
-
The Perfectly Matched Layer absorbing medium
-
Chap. 5, ed, Artech House, Boston, USA
-
Gedney SD, Taflove A. The Perfectly Matched Layer absorbing medium. Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method 1998, 263-343. in, Chap. 5, pp, ed, Artech House, Boston, USA
-
(1998)
Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method
, pp. 263-343
-
-
Gedney, S.D.1
Taflove, A.2
-
23
-
-
2142739347
-
Non-reflecting boundary conditions: review article
-
Givoli D. Non-reflecting boundary conditions: review article. J. Comput. Phys. 1991, 94:1-29.
-
(1991)
J. Comput. Phys.
, vol.94
, pp. 1-29
-
-
Givoli, D.1
-
24
-
-
0001378382
-
Nonreflecting boundary conditions for elastodynamics scattering
-
Grote MJ. Nonreflecting boundary conditions for elastodynamics scattering. J. Comput. Phys. 2000, 161:331-353.
-
(2000)
J. Comput. Phys.
, vol.161
, pp. 331-353
-
-
Grote, M.J.1
-
25
-
-
33646526463
-
Continued fraction absorbing boundary conditions for convex polygonal domains
-
Guddati MN, Lim KW. Continued fraction absorbing boundary conditions for convex polygonal domains. Int. J. Numer. Meth. Eng. 2006, 66(6):949-977.
-
(2006)
Int. J. Numer. Meth. Eng.
, vol.66
, Issue.6
, pp. 949-977
-
-
Guddati, M.N.1
Lim, K.W.2
-
26
-
-
0032141095
-
A formulation of asymptotic and exact boundary conditions using local operators
-
Hagstrom T, Hariharan SI. A formulation of asymptotic and exact boundary conditions using local operators. Appl. Num. Math. 1998, 27:403-416.
-
(1998)
Appl. Num. Math.
, vol.27
, pp. 403-416
-
-
Hagstrom, T.1
Hariharan, S.I.2
-
27
-
-
0025925925
-
Absorbing boundary conditions for elastic waves
-
Higdon RL. Absorbing boundary conditions for elastic waves. Geophysics 1991, 56:231-241.
-
(1991)
Geophysics
, vol.56
, pp. 231-241
-
-
Higdon, R.L.1
-
28
-
-
34548525022
-
An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation
-
Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 2007, 72(5):SM155-SM167.
-
(2007)
Geophysics
, vol.72
, Issue.5
-
-
Komatitsch, D.1
Martin, R.2
-
29
-
-
0033400861
-
Introduction to the spectral-element method for 3-D seismic wave propagation
-
Komatitsch D, Tromp J. Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 1999, 139(3):806-822.
-
(1999)
Geophys. J. Int.
, vol.139
, Issue.3
, pp. 806-822
-
-
Komatitsch, D.1
Tromp, J.2
-
30
-
-
0038638340
-
A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation
-
Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys. J. Int. 2003, 154(1):146-153.
-
(2003)
Geophys. J. Int.
, vol.154
, Issue.1
, pp. 146-153
-
-
Komatitsch, D.1
Tromp, J.2
-
31
-
-
84980249851
-
Velocity dispersion due to anelasticity: implications for seismology and mantle composition
-
Liu HP, Anderson DL, Kanamori H. Velocity dispersion due to anelasticity: implications for seismology and mantle composition. Geophys. J. R. astr. Soc. 1976, 47:41-58.
-
(1976)
Geophys. J. R. astr. Soc.
, vol.47
, pp. 41-58
-
-
Liu, H.P.1
Anderson, D.L.2
Kanamori, H.3
-
33
-
-
33750306641
-
Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods
-
Ma S, Liu P. Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods. Bull. seism. Soc. Am. 2006, 96(5):1779-1794.
-
(2006)
Bull. seism. Soc. Am.
, vol.96
, Issue.5
, pp. 1779-1794
-
-
Ma, S.1
Liu, P.2
-
34
-
-
48449096546
-
An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave equation in poroelastic media
-
Martin R, Komatitsch D, Ezziani A. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave equation in poroelastic media. Geophysics 2008a, 73(4):T51-T61.
-
(2008)
Geophysics
, vol.73
, Issue.4
-
-
Martin, R.1
Komatitsch, D.2
Ezziani, A.3
-
35
-
-
62449330471
-
A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation
-
Martin R, Komatitsch D, Gedney SD. A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation. Comput. Modell. Eng. Sci. 2008b, 37(3):274-304.
-
(2008)
Comput. Modell. Eng. Sci.
, vol.37
, Issue.3
, pp. 274-304
-
-
Martin, R.1
Komatitsch, D.2
Gedney, S.D.3
-
36
-
-
16344378662
-
On the rheological models used for time-domain methods of seismic wave propagation
-
Moczo P, Kristek J. On the rheological models used for time-domain methods of seismic wave propagation. Geophys. Res. Lett. 2005, 32:L01306.
-
(2005)
Geophys. Res. Lett.
, vol.32
-
-
Moczo, P.1
Kristek, J.2
-
37
-
-
33751052800
-
The finite-difference time-domain method for modeling of seismic wave propagation
-
chap. 8, eds, Advances in Geophysics, Elsevier - Academic Press
-
Moczo P, Robertsson J, Eisner L, Wu R-S, Maupin V. The finite-difference time-domain method for modeling of seismic wave propagation. Advances in Wave Propagation in Heterogeneous Media 2007, Vol. 48:421-516. in, chap. 8, pp, eds, Advances in Geophysics, Elsevier - Academic Press
-
(2007)
Advances in Wave Propagation in Heterogeneous Media
, vol.Vol. 48
, pp. 421-516
-
-
Moczo, P.1
Robertsson, J.2
Eisner, L.3
Wu, R.-.S.4
Maupin, V.5
-
38
-
-
0028852188
-
An optimal absorbing boundary condition for elastic wave modeling
-
Peng CB, Töksoz MN. An optimal absorbing boundary condition for elastic wave modeling. Geophysics 1995, 60:296-301.
-
(1995)
Geophysics
, vol.60
, pp. 296-301
-
-
Peng, C.B.1
Töksoz, M.N.2
-
39
-
-
0032154224
-
Generalized Galerkin approximations of elastic waves with absorbing boundary conditions
-
Quarteroni A, Tagliani A, Zampieri E. Generalized Galerkin approximations of elastic waves with absorbing boundary conditions. Comput. Meth. appl. Mech. Eng. 1998, 163:323-341.
-
(1998)
Comput. Meth. appl. Mech. Eng.
, vol.163
, pp. 323-341
-
-
Quarteroni, A.1
Tagliani, A.2
Zampieri, E.3
-
40
-
-
0034547937
-
Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media
-
Roden JA, Gedney SD. Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw.Opt. Technol. Lett. 2000, 27(5):334-339.
-
(2000)
Microw.Opt. Technol. Lett.
, vol.27
, Issue.5
, pp. 334-339
-
-
Roden, J.A.1
Gedney, S.D.2
-
41
-
-
0023525505
-
Absorbing boundary conditions and surface waves
-
Sochacki J, Kubichek R, George J, Fletcher WR, Smithson S. Absorbing boundary conditions and surface waves. Geophysics 1987, 52(1):60-71.
-
(1987)
Geophysics
, vol.52
, Issue.1
, pp. 60-71
-
-
Sochacki, J.1
Kubichek, R.2
George, J.3
Fletcher, W.R.4
Smithson, S.5
-
42
-
-
0001674450
-
Improved transparent boundary formulations for the elastic wave equation
-
Stacey R. Improved transparent boundary formulations for the elastic wave equation. Bull. seism. Soc. Am. 1988, 78(6):2089-2097.
-
(1988)
Bull. seism. Soc. Am.
, vol.78
, Issue.6
, pp. 2089-2097
-
-
Stacey, R.1
-
43
-
-
0035387585
-
The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media
-
Zeng YQ, He JQ, Liu QH. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media. Geophysics 2001, 66(4):1258-1266.
-
(2001)
Geophysics
, vol.66
, Issue.4
, pp. 1258-1266
-
-
Zeng, Y.Q.1
He, J.Q.2
Liu, Q.H.3
|