메뉴 건너뛰기




Volumn 57, Issue 1, 2007, Pages 11-32

Point sets with low lp-discrepancy

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70349960012     PISSN: 01399918     EISSN: 13372211     Source Type: Journal    
DOI: 10.2478/s12175-007-0011-x     Document Type: Article
Times cited : (2)

References (17)
  • 3
    • 0000289845 scopus 로고
    • A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley
    • DE CLERCK, L.: A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley Monatsh. Math. 101 (1986), 261-278.
    • (1986) Monatsh. Math. , vol.101 , pp. 261-278
    • DE CLERCK, L.1
  • 4
    • 0003413875 scopus 로고
    • Sequences. Discrepancies and Applications
    • Springer-Verlag, Berlin, 1997
    • DRMOTA, M. — TICHY, R.F.: Sequences. Discrepancies and Applications. Lecture Notes in Math. 1651, Springer-Verlag, Berlin, 1997.
    • (1651) Lecture Notes in Math
    • DRMOTA, M.1    TICHY, R.F.2
  • 5
    • 0034355044 scopus 로고    scopus 로고
    • Haar function based estimates of the star-discrepancy of plane digital nets
    • ENTACHER, K.: Haar function based estimates of the star-discrepancy of plane digital nets Monatsh. Math. 130 (2000), 99-108.
    • (2000) Monatsh. Math. , vol.130 , pp. 99-108
    • ENTACHER, K.1
  • 6
    • 0000835150 scopus 로고
    • The extreme and the L2 discrepancies of some plane sets
    • HALTON, J.H. — ZAREMBA, S.K.: The extreme and the L2 discrepancies of some plane sets Monatsh. Math. 73 (1969), 316-328.
    • (1969) Monatsh. Math. , vol.73 , pp. 316-328
    • HALTON, J.H.1    ZAREMBA, S.K.2
  • 7
    • 85009986227 scopus 로고    scopus 로고
    • On some remarkable properties of the two-dimensional Hammersley point set in base 2
    • KRITZER, P.: On some remarkable properties of the two-dimensional Hammersley point set in base 2 J. Theor. Nombres Bordeaux 18 (2006). 203-221.
    • (2006) J. Theor. Nombres Bordeaux , vol.18 , pp. 203-221
    • KRITZER, P.1
  • 8
    • 33846697412 scopus 로고    scopus 로고
    • A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets
    • (To appear)
    • KRITZER, P. — LARCHER, G. — PILLICHSHAMMER, F.: A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets. Ann. Mat. Pura Appl. (4) (2007) (To appear).
    • (2007) Ann. Mat. Pura Appl. , Issue.4
    • KRITZER, P.1    LARCHER, G.2    PILLICHSHAMMER, F.3
  • 10
    • 0041831009 scopus 로고    scopus 로고
    • Sums of distances to the nearest integer and the discrepancy of digital nets
    • LARCHER, G. — PILLICHSHAMMER, F.: Sums of distances to the nearest integer and the discrepancy of digital nets Acta Arith. 106 (2003), 379-408.
    • (2003) Acta Arith. , vol.106 , pp. 379-408
    • LARCHER, G.1    PILLICHSHAMMER, F.2
  • 12
    • 8344289793 scopus 로고
    • Point sets and sequences with small discrepancy
    • NIEDERREITER, H.: Point sets and sequences with small discrepancy Monatsh. Math. 104 (1987), 273-337.
    • (1987) Monatsh. Math. , vol.104 , pp. 273-337
    • NIEDERREITER, H.1
  • 14
    • 0036579029 scopus 로고    scopus 로고
    • On the Lp-discrepancy of the Hammersley Point Set
    • PILLICHSHAMMER, F.: On the Lp-discrepancy of the Hammersley Point Set Monatsh. Math. 136 (2002), 67-79.
    • (2002) Monatsh. Math. , vol.136 , pp. 67-79
    • PILLICHSHAMMER, F.1
  • 15
    • 0002851522 scopus 로고
    • On irregularities of distribution
    • ROTH, K.F.: On irregularities of distribution Mathematika 1 (1954), 73-79.
    • (1954) Mathematika , vol.1 , pp. 73-79
    • ROTH, K.F.1
  • 17
    • 0037610434 scopus 로고
    • Plane nets of Integration
    • [English translation in: Comput. Math. Math. Phys. 7 (1967), 258-267.]
    • VILENKIN, I.V.: Plane nets of Integration Zh. Vychisl. Mat. Mat. Fiz. 7 (1967), 189-196 [English translation in: Comput. Math. Math. Phys. 7 (1967), 258-267.]
    • (1967) Zh. Vychisl. Mat. Mat. Fiz. , vol.7 , pp. 189-196
    • VILENKIN, I.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.