메뉴 건너뛰기




Volumn 80, Issue 10, 2009, Pages

Magnetic structure of Cu2 CdB2 O6 exhibiting a quantum-mechanical magnetization plateau and classical antiferromagnetic long-range order

Author keywords

[No Author keywords available]

Indexed keywords


EID: 70349929672     PISSN: 10980121     EISSN: 1550235X     Source Type: Journal    
DOI: 10.1103/PhysRevB.80.104405     Document Type: Article
Times cited : (24)

References (27)
  • 13
    • 0027677473 scopus 로고
    • 10.1016/0921-4526(93)90108-I
    • J. Rodriguez-Carvajal, Physica B 192, 55 (1993). 10.1016/0921-4526(93) 90108-I
    • (1993) Physica B , vol.192 , pp. 55
    • Rodriguez-Carvajal, J.1
  • 17
    • 0004365716 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.56.3231
    • M. Hase, K. M. S. Etheredge, S.-J. Hwu, K. Hirota, and G. Shirane, Phys. Rev. B 56, 3231 (1997). In this reference, the spin Hamiltonian is defined as H= 2 Jh Sk Sl instead of H= Jh Sk Sl in the present paper. 10.1103/PhysRevB.56. 3231
    • (1997) Phys. Rev. B , vol.56 , pp. 3231
    • Hase, M.1    Etheredge, K.M.S.2    Hwu, S.-J.3    Hirota, K.4    Shirane, G.5
  • 18
    • 70349918534 scopus 로고    scopus 로고
    • When J1 =264 K and J2 =-143 K, a ground state in the zero magnetic field is one of the ST =0 states and is expressed as | 02, SzT =0 = C01 (| - ++ + | ++ - - | -+-+ - | +-+- ) + C02 (| -+-+ + | +-+- - | + - + - | -++- ) = C01 (| -+ - | +- ) α2 (| -+ - | +- ) α4 + C02 (| -+ - | +- ) α1 (| -+ - | +- ) α3. The two coefficients are C01 =1/ 3+ (-1+4j+2 1-2j+4 j2) 2 and C02 = (2-4j-2 1-2j+4 j2) /2 3+ (-1+4j+2 1-2j+4 j2) 2. The first term in | 02, SzT =0 is a product of a singlet state in the α2 pair and a singlet state in the α4 pair. The second term is a product of a singlet state in the α1 pair and a singlet state in the α3 pair. The ground state is singlet. Therefore, we cannot determine whether Cu1 spins [S2 and S3 in Fig. 1] and Cu2 spins [S1 and S4 in Fig. 1] have magnetic moments or not.
    • When J1 =264 K and J2 =-143 K, a ground state in the zero magnetic field is one of the ST =0 states and is expressed as | 02, SzT =0 = C01 (| - ++ + | ++ - - | -+-+ - | +-+- ) + C02 (| -+-+ + | +-+- - | + - + - | -++- ) = C01 (| -+ - | +- ) α2 (| -+ - | +- ) α4 + C02 (| -+ - | +- ) α1 (| -+ - | +- ) α3. The two coefficients are C01 =1/ 3+ (-1+4j+2 1-2j+4 j2) 2 and C02 = (2-4j-2 1-2j+4 j2) /2 3+ (-1+4j+2 1-2j+4 j2) 2. The first term in | 02, SzT =0 is a product of a singlet state in the α2 pair and a singlet state in the α4 pair. The second term is a product of a singlet state in the α1 pair and a singlet state in the α3 pair. The ground state is singlet. Therefore, we cannot determine whether Cu1 spins [S2 and S3 in Fig. 1] and Cu2 spins [S1 and S4 in Fig. 1] have magnetic moments or not.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.