-
1
-
-
14644399428
-
-
Royal Society of Chemistry, Cambridge
-
T. Patrice, Photodynamic Therapy, Royal Society of Chemistry, Cambridge, 2003.
-
(2003)
Photodynamic Therapy
-
-
Patrice, T.1
-
2
-
-
85056335236
-
-
Vols, and 2, Routledge, USA
-
W. M. Horspool, F. Lenci, CRC Handbook of Organic Photochemistry and Photobiology, Vols. 1 and 2, Routledge, USA, 2003.
-
(2003)
CRC Handbook of Organic Photochemistry and Photobiology
, vol.1
-
-
Horspool, W.M.1
Lenci, F.2
-
3
-
-
0026108692
-
-
S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, D. Solas, Science 1991, 251, 767-773.
-
(1991)
Science
, vol.251
, pp. 767-773
-
-
Fodor, S.P.A.1
Read, J.L.2
Pirrung, M.C.3
Stryer, L.4
Lu, A.T.5
Solas, D.6
-
4
-
-
0038440614
-
-
C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, Biophys. J. 2003, 84, 4023-4032.
-
(2003)
Biophys. J
, vol.84
, pp. 4023-4032
-
-
Pitsillides, C.M.1
Joe, E.K.2
Wei, X.3
Anderson, R.R.4
Lin, C.P.5
-
5
-
-
33646397306
-
-
H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, M. E. Kordesch, Nano Lett. 2006, 6, 783-788.
-
(2006)
Nano Lett
, vol.6
, pp. 783-788
-
-
Richardson, H.H.1
Hickman, Z.N.2
Govorov, A.O.3
Thomas, A.C.4
Zhang, W.5
Kordesch, M.E.6
-
6
-
-
70349948003
-
-
V. Lemieux, S. Gauthier, N. R. Branda, Angew. Chem. 2006, 118, 6974-6978;
-
V. Lemieux, S. Gauthier, N. R. Branda, Angew. Chem. 2006, 118, 6974-6978;
-
-
-
-
7
-
-
33750468983
-
-
Angew. Chem. Int. Ed. 2006, 45, 6820-6824.
-
(2006)
Angew. Chem. Int. Ed
, vol.45
, pp. 6820-6824
-
-
-
8
-
-
70349966846
-
-
M. Shi, J. H. Wosnick, K. Ho, A. Keating, M. S. Shoichet, Angew. Chem. 2007, 119, 6238-6243;
-
(2007)
Angew. Chem
, vol.119
, pp. 6238-6243
-
-
Shi, M.1
Wosnick, J.H.2
Ho, K.3
Keating, A.4
Shoichet, M.S.5
-
9
-
-
34548080032
-
-
Angew. Chem. Int. Ed. 2007, 46, 6126-6131.
-
(2007)
Angew. Chem. Int. Ed
, vol.46
, pp. 6126-6131
-
-
-
10
-
-
33750923118
-
-
J. Zhu, A. J. Kell, M.S. Workentin, Org. Lett. 2006, 8, 4993-4996.
-
(2006)
Org. Lett
, vol.8
, pp. 4993-4996
-
-
Zhu, J.1
Kell, A.J.2
Workentin, M.S.3
-
11
-
-
11444268404
-
-
K. Adachi, A. K. Achimuthu, Y. Chujo, Macromolecules 2004, 37, 9793-9797.
-
(2004)
Macromolecules
, vol.37
, pp. 9793-9797
-
-
Adachi, K.1
Achimuthu, A.K.2
Chujo, Y.3
-
13
-
-
70349963601
-
-
The exo isomer converts to its furan and maleimide components at higher temperatures.
-
The exo isomer converts to its furan and maleimide components at higher temperatures.
-
-
-
-
14
-
-
70349951283
-
-
See the Supporting Information
-
See the Supporting Information.
-
-
-
-
15
-
-
34249750941
-
-
N. Nerambourg, M. H. V. Werts, M. Chariot, M. Blanchard-Desce, Langmuir 2007, 23, 5563-5570.
-
(2007)
Langmuir
, vol.23
, pp. 5563-5570
-
-
Nerambourg, N.1
Werts, M.H.V.2
Chariot, M.3
Blanchard-Desce, M.4
-
16
-
-
33748566801
-
-
F. Cannone, G. Chirico, A. R. Bizzarri, S. Cannistraro, J. Phys. Chem. B 2006, 110, 16491-16498.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 16491-16498
-
-
Cannone, F.1
Chirico, G.2
Bizzarri, A.R.3
Cannistraro, S.4
-
17
-
-
0037062828
-
-
T. Pham, J. B. Jackson, N. J. Halas, T. R. Lee, Langmuir 2002, 18, 4915-4920.
-
(2002)
Langmuir
, vol.18
, pp. 4915-4920
-
-
Pham, T.1
Jackson, J.B.2
Halas, N.J.3
Lee, T.R.4
-
19
-
-
33748547223
-
-
J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, J. Phys. Chem. B 2006, 110, 15700-15707.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 15700-15707
-
-
Kimling, J.1
Maier, M.2
Okenve, B.3
Kotaidis, V.4
Ballot, H.5
Plech, A.6
-
20
-
-
0000177645
-
-
C. K. Sun, F. Vallée, L. Acioli, E. P. Ippen, J. G. Fujimoto, Phys. Rev. B 1993, 48, 12365-12368.
-
(1993)
Phys. Rev. B
, vol.48
, pp. 12365-12368
-
-
Sun, C.K.1
Vallée, F.2
Acioli, L.3
Ippen, E.P.4
Fujimoto, J.G.5
-
21
-
-
0030134107
-
-
T. S. Ahmadi, S. L. Logunov, M. A. El-Sayed, J. Phys. Chem. 1996, 100, 8053-8056.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 8053-8056
-
-
Ahmadi, T.S.1
Logunov, S.L.2
El-Sayed, M.A.3
-
22
-
-
33749538620
-
-
B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, N. Khlebtsov, Nanotechnology 2006, 17, 5167-5179.
-
(2006)
Nanotechnology
, vol.17
, pp. 5167-5179
-
-
Khlebtsov, B.1
Zharov, V.2
Melnikov, A.3
Tuchin, V.4
Khlebtsov, N.5
-
23
-
-
33646228165
-
-
P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, J. Phys. Chem. B 2006, 110, 7238-7248.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 7238-7248
-
-
Jain, P.K.1
Lee, K.S.2
El-Sayed, I.H.3
El-Sayed, M.A.4
-
24
-
-
20744436513
-
-
C. H. Chou, C. D. Chen, C. R. C. Wang, J. Phys. Chem. B 2005, 109, 11135-11138.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 11135-11138
-
-
Chou, C.H.1
Chen, C.D.2
Wang, C.R.C.3
-
25
-
-
0345686712
-
-
L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, J. L. West, Proc. Natl. Acad. Sci. USA 2003, 100, 13549-13554.
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 13549-13554
-
-
Hirsch, L.R.1
Stafford, R.J.2
Bankson, J.A.3
Sershen, S.R.4
Rivera, B.5
Price, R.E.6
Hazle, J.D.7
Halas, N.J.8
West, J.L.9
-
26
-
-
34547600314
-
-
A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, J. L. West, Nano Lett. 2007, 7, 1929-1934.
-
(2007)
Nano Lett
, vol.7
, pp. 1929-1934
-
-
Gobin, A.M.1
Lee, M.H.2
Halas, N.J.3
James, W.D.4
Drezek, R.A.5
West, J.L.6
-
27
-
-
20444406055
-
-
W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 1968, 26, 62-69.
-
(1968)
J. Colloid Interface Sci
, vol.26
, pp. 62-69
-
-
Stöber, W.1
Fink, A.2
Bohn, E.3
-
29
-
-
0027663721
-
-
D. G. Duff, A. Baiker, P. P. Edwards, Langmuir 1993, 9, 2301-2309.
-
(1993)
Langmuir
, vol.9
, pp. 2301-2309
-
-
Duff, D.G.1
Baiker, A.2
Edwards, P.P.3
-
30
-
-
70349927707
-
-
The disulfide used to decorate the nanoparticles is not symmetrical and has one bicyclic system and one free maleimide derivative attached to it
-
The disulfide used to decorate the nanoparticles is not symmetrical and has one bicyclic system and one free maleimide derivative attached to it.
-
-
-
-
31
-
-
0345979435
-
-
A. Ulman, Chem. Rev. 1996, 96, 1533-1554.
-
(1996)
Chem. Rev
, vol.96
, pp. 1533-1554
-
-
Ulman, A.1
-
32
-
-
70349962294
-
-
Purification of the particles included at least three complete cycles of centrifugation with decanting of the supernatant followed by dispersion of the collected solids in 18 MΩ water. The centrifugation step required a speed of 10000 rpm for 10 min for the gold nanoparticles and 4000 rpm for 10 min for the core-shell nanoparticles
-
Purification of the particles included at least three complete cycles of centrifugation with decanting of the supernatant followed by dispersion of the collected solids in 18 MΩ water. The centrifugation step required a speed of 10000 rpm for 10 min for the gold nanoparticles and 4000 rpm for 10 min for the core-shell nanoparticles.
-
-
-
-
33
-
-
70349936996
-
-
Typically, the fluorescence emission intensity remained constant after three purification cycles, which indicated that the unbounded dye had been removed from the reaction
-
Typically, the fluorescence emission intensity remained constant after three purification cycles, which indicated that the unbounded dye had been removed from the reaction.
-
-
-
-
34
-
-
70349966795
-
-
A time dependent study on the nanoparticles dispersed in water (Figure S7 in Supporting Information) indicated a relatively stable dispersion of gold nanoparticles over a period of 4 h. These dispersions are stable for time periods longer than the length of the photothermal release experiments.
-
A time dependent study on the nanoparticles dispersed in water (Figure S7 in Supporting Information) indicated a relatively stable dispersion of gold nanoparticles over a period of 4 h. These dispersions are stable for time periods longer than the length of the photothermal release experiments.
-
-
-
-
35
-
-
0036709774
-
-
K. G. Thomas, B. I. Ipe, P. K. Sudeep, Pure Appl. Chem. 2002, 74, 1731-1738.
-
(2002)
Pure Appl. Chem
, vol.74
, pp. 1731-1738
-
-
Thomas, K.G.1
Ipe, B.I.2
Sudeep, P.K.3
-
36
-
-
70349951222
-
-
The number of fluorescent molecules per particle was estimated based on a quantitative analysis of the amount of dye released and the number of particles in solution. For this experiment, a dispersion of dye-coated nanoparticles was adjusted to pH 12 and heated to 80°C in a water bath. The presence of a strong base (e.g, KOH) efficiently hydrolyzes the ester linkage in the dye bound to the nanoparticles. The release of dye molecules was monitored by fluorescence spectroscopy. Upon reaching a plateau in the overall fluorescence emission, the quantity of dye released was determined using a series of fluorescein standards. This quantitative analysis provided an estimate of the number of dye molecules released into solution. The number of gold nanoparticles in solution was quantified using the average particle size, the density of gold, and the amount of gold in solution as determined by inductively coupled plasma MS analysis
-
The number of fluorescent molecules per particle was estimated based on a quantitative analysis of the amount of dye released and the number of particles in solution. For this experiment, a dispersion of dye-coated nanoparticles was adjusted to pH 12 and heated to 80°C in a water bath. The presence of a strong base (e.g., KOH) efficiently hydrolyzes the ester linkage in the dye bound to the nanoparticles. The release of dye molecules was monitored by fluorescence spectroscopy. Upon reaching a plateau in the overall fluorescence emission, the quantity of dye released was determined using a series of fluorescein standards. This quantitative analysis provided an estimate of the number of dye molecules released into solution. The number of gold nanoparticles in solution was quantified using the average particle size, the density of gold, and the amount of gold in solution (as determined by inductively coupled plasma MS analysis).
-
-
-
-
37
-
-
33644523054
-
-
P. K. Jain, W. Qian, M. A. El-Sayed, J. Am. Chem. Soc. 2006, 128, 2426-2433.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 2426-2433
-
-
Jain, P.K.1
Qian, W.2
El-Sayed, M.A.3
|