-
1
-
-
0036530889
-
-
10.1016/S0304-8853(01)01086-1
-
R. P. Cowburn, J. Magn. Magn. Mater. 242-245, 505 (2002). 10.1016/S0304-8853(01)01086-1
-
(2002)
J. Magn. Magn. Mater.
, vol.242-245
, pp. 505
-
-
Cowburn, R.P.1
-
3
-
-
58249124605
-
-
10.1103/PhysRevLett.101.267206
-
K.-S. Lee, S.-K. Kim, Y.-S. Yu, Y.-S. Choi, K. Y. Guslienko, H. Jung, and P. Fischer, Phys. Rev. Lett. 101, 267206 (2008). 10.1103/PhysRevLett.101.267206
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 267206
-
-
Lee, K.-S.1
Kim, S.-K.2
Yu, Y.-S.3
Choi, Y.-S.4
Guslienko, K.Y.5
Jung, H.6
Fischer, P.7
-
4
-
-
67649199961
-
-
10.1038/nphys1231
-
A. Vansteenkiste, Nat. Phys. 5, 332 (2009). 10.1038/nphys1231
-
(2009)
Nat. Phys.
, vol.5
, pp. 332
-
-
Vansteenkiste, A.1
-
5
-
-
34548459867
-
-
10.1063/1.2770819
-
V. P. Kravchuk, D. D. Sheka, Y. Gaididei, and F. G. Mertens, J. Appl. Phys. 102, 043908 (2007). 10.1063/1.2770819
-
(2007)
J. Appl. Phys.
, vol.102
, pp. 043908
-
-
Kravchuk, V.P.1
Sheka, D.D.2
Gaididei, Y.3
Mertens, F.G.4
-
6
-
-
18244408290
-
-
10.1103/PhysRevLett.94.027205
-
B. A. Ivanov and C. E. Zaspel, Phys. Rev. Lett. 94, 027205 (2005). 10.1103/PhysRevLett.94.027205
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 027205
-
-
Ivanov, B.A.1
Zaspel, C.E.2
-
7
-
-
33644961791
-
-
10.1103/PhysRevB.72.024427
-
C. E. Zaspel, B. A. Ivanov, J. P. Park, and P. A. Crowell, Phys. Rev. B 72, 024427 (2005). 10.1103/PhysRevB.72.024427
-
(2005)
Phys. Rev. B
, vol.72
, pp. 024427
-
-
Zaspel, C.E.1
Ivanov, B.A.2
Park, J.P.3
Crowell, P.A.4
-
8
-
-
50449096890
-
-
10.1103/PhysRevB.78.064418
-
R. Zivieri and F. Nizzoli, Phys. Rev. B 78, 064418 (2008). 10.1103/PhysRevB.78.064418
-
(2008)
Phys. Rev. B
, vol.78
, pp. 064418
-
-
Zivieri, R.1
Nizzoli, F.2
-
9
-
-
70349921557
-
-
We used for all OOMMF simulations material parameters adopted for the Py particle: the exchange constant A=2.6× 10-6 erg/cm, the saturation magnetization MS =8.6× 102 G, the damping coefficient η=0.006, and the anisotropy was neglected. This corresponds to the exchange length a= A/4π MS2 5.3nm. The mesh cells have sizes 3×3×hnm, where h is the thickness of the sample. The applied field was used in form b (t) =b (1- e- t2 /Δ t2) (cosωt,sinωt,0), with Δt=50ps.
-
We used for all OOMMF simulations material parameters adopted for the Py particle: the exchange constant A=2.6× 10-6 erg/cm, the saturation magnetization MS =8.6× 102 G, the damping coefficient η=0.006, and the anisotropy was neglected. This corresponds to the exchange length a= A/4π MS2 5.3nm. The mesh cells have sizes 3×3×hnm, where h is the thickness of the sample. The applied field was used in form b (t) =b (1- e- t2 /Δ t2) (cosωt,sinωt,0), with Δt=50ps.
-
-
-
-
11
-
-
33947246989
-
-
10.1103/PhysRevLett.98.117201
-
R. Hertel, S. Gliga, C. M. Schneider, and M. Fähnle, Phys. Rev. Lett. 98, 117201 (2007). 10.1103/PhysRevLett.98.117201
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 117201
-
-
Hertel, R.1
Gliga, S.2
Schneider, C.M.3
Fähnle, M.4
-
12
-
-
50349090556
-
-
10.1063/1.2957013
-
Y. B. Gaididei, V. P. Kravchuk, D. D. Sheka, and F. G. Mertens, Low Temp. Phys. 34, 528 (2008). 10.1063/1.2957013
-
(2008)
Low Temp. Phys.
, vol.34
, pp. 528
-
-
Gaididei, Y.B.1
Kravchuk, V.P.2
Sheka, D.D.3
Mertens, F.G.4
-
13
-
-
70349923695
-
-
The cells with fixed magnetization contribute to the effective field but they are omitted from the procedure of numerical time integration of the LL equation.
-
The cells with fixed magnetization contribute to the effective field but they are omitted from the procedure of numerical time integration of the LL equation.
-
-
-
-
14
-
-
70349901012
-
-
For the planar vortex the magnon modes with opposite m are degenerated; for the general case see, e.g., Ref..
-
For the planar vortex the magnon modes with opposite m are degenerated; for the general case see, e.g., Ref..
-
-
-
-
15
-
-
0000986128
-
-
10.1103/PhysRevA.60.3313
-
T. Isoshima and K. Machida, Phys. Rev. A 60, 3313 (1999). 10.1103/PhysRevA.60.3313
-
(1999)
Phys. Rev. A
, vol.60
, pp. 3313
-
-
Isoshima, T.1
MacHida, K.2
|