-
4
-
-
33846960719
-
-
Kumaki D., Ando S., Shimono S., Yamashita Y., Umeda T., and Tokito S. Appl. Phys. Lett. 90 (2007) 053506
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 053506
-
-
Kumaki, D.1
Ando, S.2
Shimono, S.3
Yamashita, Y.4
Umeda, T.5
Tokito, S.6
-
5
-
-
54249136777
-
-
Tomatsu K., Hamada T., Nagase T., Yamazaki S., Kobayashi T., Murakami S., Matsukawa K., and Naito H. Jpn. J. Appl. Phys. 47 (2008) 3196
-
(2008)
Jpn. J. Appl. Phys.
, vol.47
, pp. 3196
-
-
Tomatsu, K.1
Hamada, T.2
Nagase, T.3
Yamazaki, S.4
Kobayashi, T.5
Murakami, S.6
Matsukawa, K.7
Naito, H.8
-
6
-
-
9344265809
-
-
Pernstich K.P., Goldmann C., Krellner C., Oberhoff D., Gundlach D.J., and Batlogg B. Synthetic Metals 146 (2004) 325
-
(2004)
Synthetic Metals
, vol.146
, pp. 325
-
-
Pernstich, K.P.1
Goldmann, C.2
Krellner, C.3
Oberhoff, D.4
Gundlach, D.J.5
Batlogg, B.6
-
7
-
-
2342639588
-
-
Kobayashi S., Nishikawa T., Takenobu T., Mori S., Shimoda T., Mitani T., Shimotani H., Yoshimoto N., Ogawa S., and Iwasa Y. Nature Materials 3 (2004) 317
-
(2004)
Nature Materials
, vol.3
, pp. 317
-
-
Kobayashi, S.1
Nishikawa, T.2
Takenobu, T.3
Mori, S.4
Shimoda, T.5
Mitani, T.6
Shimotani, H.7
Yoshimoto, N.8
Ogawa, S.9
Iwasa, Y.10
-
9
-
-
36048985675
-
-
Suemori K., Uemura S., Yoshida M., Hoshino S., Takada N., Kodzasa T., and Kamata T. Appl. Phys. Lett. 91 (2007) 192112
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 192112
-
-
Suemori, K.1
Uemura, S.2
Yoshida, M.3
Hoshino, S.4
Takada, N.5
Kodzasa, T.6
Kamata, T.7
-
10
-
-
17444412254
-
-
Wu Y., Liu P., Ong B.S., Srikumar T., Zhao N., Botton G., and Zhu S. Appl. Phys. Lett. 86 (2005) 142102
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 142102
-
-
Wu, Y.1
Liu, P.2
Ong, B.S.3
Srikumar, T.4
Zhao, N.5
Botton, G.6
Zhu, S.7
-
13
-
-
70349866134
-
-
Karakawa M., Chikamatsu M., Yoshida Y., Oishi M., Azumi R., and Yase K. Appl. Phys. Express 1 (2008) 061802
-
(2008)
Appl. Phys. Express
, vol.1
, pp. 061802
-
-
Karakawa, M.1
Chikamatsu, M.2
Yoshida, Y.3
Oishi, M.4
Azumi, R.5
Yase, K.6
-
16
-
-
8444235050
-
-
Chang J.F., Sun B., Breiby D.W., Nielsen M.M., Sölling T.I., Giles M., MaCulloch I., and Sirringhaus H. Chem Mater. 16 (2004) 4772
-
(2004)
Chem Mater.
, vol.16
, pp. 4772
-
-
Chang, J.F.1
Sun, B.2
Breiby, D.W.3
Nielsen, M.M.4
Sölling, T.I.5
Giles, M.6
MaCulloch, I.7
Sirringhaus, H.8
-
17
-
-
33845798485
-
-
Cho S., Lee K., Yuen J., Wang G., Moses D., Heeger A.J., Surin M., and Lazzaroni R. J. Appl. Phys. 100 (2006) 114503
-
(2006)
J. Appl. Phys.
, vol.100
, pp. 114503
-
-
Cho, S.1
Lee, K.2
Yuen, J.3
Wang, G.4
Moses, D.5
Heeger, A.J.6
Surin, M.7
Lazzaroni, R.8
-
18
-
-
0033554710
-
-
Sirringhaus H., Brown P.J., Friend R.H., Nielsen M.M., Bechgaard K., Langeveld-Voss B.M.W., Spiering A.J.H., Janssen R.A.J., Meijer E.W., Herwig P., and de Leeuw D.M. Nature. 401 (1999) 685
-
(1999)
Nature.
, vol.401
, pp. 685
-
-
Sirringhaus, H.1
Brown, P.J.2
Friend, R.H.3
Nielsen, M.M.4
Bechgaard, K.5
Langeveld-Voss, B.M.W.6
Spiering, A.J.H.7
Janssen, R.A.J.8
Meijer, E.W.9
Herwig, P.10
de Leeuw, D.M.11
-
19
-
-
28844446654
-
-
Park Y.D., Kim D.H., Jang Y., Hwang M., Lim J.A., and Cho K. Appl. Phys. Lett. 87 (2005) 243509
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 243509
-
-
Park, Y.D.1
Kim, D.H.2
Jang, Y.3
Hwang, M.4
Lim, J.A.5
Cho, K.6
-
20
-
-
70349849471
-
-
We obtained similar tendency for the TFTs with different channel lengths (5, 10, 20 and 50μm).
-
We obtained similar tendency for the TFTs with different channel lengths (5, 10, 20 and 50μm).
-
-
-
-
21
-
-
70349868278
-
-
We cannot completely exclude the existence of P3HT structural difference near by the interface between the semiconductor and insulator in the device, which may not be detected by means of ordinary XRD and UV-vis measurements. As carrier transport generally occurs at the interface between semiconductor and insulator, even a slight structural change will significantly influence the electrical characteristics. The structural difference may be a density of crystalline domains at the interface: when the structure of majority domains is suitable for carrier transport, the device will give high mobility
-
We cannot completely exclude the existence of P3HT structural difference near by the interface between the semiconductor and insulator in the device, which may not be detected by means of ordinary XRD and UV-vis measurements. As carrier transport generally occurs at the interface between semiconductor and insulator, even a slight structural change will significantly influence the electrical characteristics. The structural difference may be a density of crystalline domains at the interface: when the structure of majority domains is suitable for carrier transport, the device will give high mobility.
-
-
-
-
23
-
-
20744459761
-
-
Pernstich K.P., Haas S., Oberhoff D., Goldmann C., Gundlach D.J., Batlogg B., Rashid A.N., and Schitter G. J. Appl. Phys. 96 (2004) 6431
-
(2004)
J. Appl. Phys.
, vol.96
, pp. 6431
-
-
Pernstich, K.P.1
Haas, S.2
Oberhoff, D.3
Goldmann, C.4
Gundlach, D.J.5
Batlogg, B.6
Rashid, A.N.7
Schitter, G.8
-
24
-
-
70349880489
-
-
The estimated trap density values are small compared with those reported by others [22,23]. This result indicates that our substrate cleaning and SAM treatment are adequate.
-
The estimated trap density values are small compared with those reported by others [22,23]. This result indicates that our substrate cleaning and SAM treatment are adequate.
-
-
-
|