-
1
-
-
33645657061
-
A framework for on-demand classification of evolving data streams
-
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for on-demand classification of evolving data streams. IEEE Transactions on Knowledge and Data Engineering 18(5), 577-589 (2006)
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.5
, pp. 577-589
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
2
-
-
52649146290
-
Stop chasing trends: Discovering high order models in evolving data
-
Chen, S., Wang, H., Zhou, S., Yu, P.: Stop chasing trends: Discovering high order models in evolving data. In: Proc. ICDE, pp. 923-932 (2008)
-
(2008)
Proc. ICDE
, pp. 923-932
-
-
Chen, S.1
Wang, H.2
Zhou, S.3
Yu, P.4
-
4
-
-
33746442922
-
An ensemble classifier for drifting concepts
-
Porto, Portugal, October 2005
-
Scholz, M., Klinkenberg., R.: An ensemble classifier for drifting concepts. In: Proc. Second International Workshop on Knowledge Discovery in Data Streams (IWKDDS), Porto, Portugal, October 2005, pp. 53-64 (2005)
-
(2005)
Proc. Second International Workshop on Knowledge Discovery in Data Streams (IWKDDS)
, pp. 53-64
-
-
Scholz, M.1
Klinkenberg., R.2
-
5
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
Washington, DC, USA, ACM, New York
-
Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proc. ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, DC, USA, pp. 226-235. ACM, New York (2003)
-
(2003)
Proc. Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
6
-
-
32344442287
-
Combining proactive and reactive predictions for data streams
-
Yang, Y., Wu, X., Zhu, X.: Combining proactive and reactive predictions for data streams. In: Proc. KDD, pp. 710-715 (2005)
-
(2005)
Proc. KDD
, pp. 710-715
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
7
-
-
67049160126
-
A practical approach to classify evolving data streams: Training with limited amount of labeled data
-
Pisa, Italy, December 15-19
-
Masud, M., Gao, J., Khan, L., Han, J., Thuraisingham, B.: A practical approach to classify evolving data streams: Training with limited amount of labeled data. In: Proc. International Conference on Data Mining (ICDM), Pisa, Italy, December 15-19, pp. 929-934 (2008)
-
(2008)
Proc. International Conference on Data Mining (ICDM)
, pp. 929-934
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
8
-
-
0034592938
-
Mining high-speed data streams
-
Boston, MA, USA, ACM Press, New York
-
Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Boston, MA, USA, pp. 71-80. ACM Press, New York (2000)
-
(2000)
Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 71-80
-
-
Domingos, P.1
Hulten, G.2
-
9
-
-
0035789299
-
Mining time-changing data streams
-
San Francisco, CA, USA, August 2001
-
Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proc. seventh ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), San Francisco, CA, USA, August 2001, pp. 97-106 (2001)
-
(2001)
Proc. Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
10
-
-
49749130418
-
On appropriate assumptions to mine data streams
-
Omaha, NE, USA, October 2007
-
Gao, J., Fan, W., Han, J.: On appropriate assumptions to mine data streams. In: Proc. Seventh IEEE International Conference on Data Mining (ICDM), Omaha, NE, USA, October 2007, pp. 143-152 (2007)
-
(2007)
Proc. Seventh IEEE International Conference on Data Mining (ICDM)
, pp. 143-152
-
-
Gao, J.1
Fan, W.2
Han, J.3
-
11
-
-
31844453033
-
Using additive expert ensembles to cope with concept drift
-
Bonn, Germany, August 2005
-
Kolter, J., Maloof., M.: Using additive expert ensembles to cope with concept drift. In: Proc. International Conference on Machine Learning (ICML), Bonn, Germany, August 2005, pp. 449-456 (2005)
-
(2005)
Proc. International Conference on Machine Learning (ICML)
, pp. 449-456
-
-
Kolter, J.1
Maloof., M.2
-
12
-
-
34547969350
-
Label propagation and quadratic criterion
-
Chapelle, O., Schölkopf, B., Zien, A. (eds.) MIT Press, Cambridge
-
Bengio, Y., Delalleau, O., Le Roux, N.: Label propagation and quadratic criterion. In: Chapelle, O., Schölkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 193- 216. MIT Press, Cambridge (2006)
-
(2006)
Semi-Supervised Learning
, pp. 193-216
-
-
Bengio, Y.1
Delalleau, O.2
Le Roux, N.3
-
13
-
-
70349858595
-
Multi-label large margin hierarchical perceptron
-
Woolam, C., Khan, L.: Multi-label large margin hierarchical perceptron. IJDMMM 1(1), 5-22 (2008)
-
(2008)
IJDMMM
, vol.1
, Issue.1
, pp. 5-22
-
-
Woolam, C.1
Khan, L.2
|