메뉴 건너뛰기




Volumn 5772 LCNS, Issue , 2009, Pages 83-94

Context-based distance learning for categorical data clustering

Author keywords

[No Author keywords available]

Indexed keywords

CATEGORICAL ATTRIBUTES; CATEGORICAL DATA CLUSTERING; CLUSTERING DATA; CONTEXT-BASED; CRITICAL POINTS; DATA MINING APPLICATIONS; DATA SETS; DISTANCE LEARNING; HIERARCHICAL CLUSTERING ALGORITHMS; NUMERICAL ATTRIBUTES; STATE OF THE ART; SYNTHETIC DATASETS;

EID: 70349858139     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-03915-7_8     Document Type: Conference Paper
Times cited : (42)

References (17)
  • 3
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283-304 (1998)
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 4
    • 0032652570 scopus 로고    scopus 로고
    • Rock: A robust clustering algorithm for categorical attributes
    • Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categorical attributes. In: Proc. of IEEE ICDE 1999 (1999)
    • (1999) Proc. of IEEE ICDE 1999
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 6
    • 28444449780 scopus 로고    scopus 로고
    • Clicks: Mining subspace clusters in categorical data via k-partite maximal cliques
    • Zaki, M.J., Peters, M.: Clicks: Mining subspace clusters in categorical data via k-partite maximal cliques. In: Proc. of IEEE ICDE 2005, pp. 355-356 (2005)
    • (2005) Proc. of IEEE ICDE 2005 , pp. 355-356
    • Zaki, M.J.1    Peters, M.2
  • 8
    • 0038494682 scopus 로고    scopus 로고
    • Coolcat: An entropy-based algorithm for categorical clustering
    • ACM Press, New York
    • Barbara, D., Couto, J., Li, Y.: Coolcat: an entropy-based algorithm for categorical clustering. In: Proc. of CIKM 2002, pp. 582-589. ACM Press, New York (2002)
    • (2002) Proc. of CIKM 2002 , pp. 582-589
    • Barbara, D.1    Couto, J.2    Li, Y.3
  • 9
    • 14344259208 scopus 로고    scopus 로고
    • Entropy-based criterion in categorical clustering
    • Li, T., Ma, S., Ogihara, M.: Entropy-based criterion in categorical clustering. In: Proc. of ICML 2004, pp. 536-543 (2004)
    • (2004) Proc. of ICML 2004 , pp. 536-543
    • Li, T.1    Ma, S.2    Ogihara, M.3
  • 10
    • 33750473714 scopus 로고    scopus 로고
    • A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set
    • Ahmad, A., Dey, L.: A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set. Pattern Recogn. Lett. 28(1), 110-118 (2007)
    • (2007) Pattern Recogn. Lett. , vol.28 , Issue.1 , pp. 110-118
    • Ahmad, A.1    Dey, L.2
  • 11
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elissee., A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182 (2003)
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elissee, A.2
  • 12
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlationbased filter solution
    • Washington DC
    • Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlationbased filter solution. In: Proc. of ICML 2003, Washington, DC (2003)
    • (2003) Proc. of ICML 2003
    • Yu, L.1    Liu, H.2
  • 14
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Strehl, A., Ghosh, J., Cardie, C.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583-617 (2002)
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2    Cardie, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.