메뉴 건너뛰기




Volumn 35, Issue 1, 2010, Pages 94-110

Query result caching for multiple event-driven continuous queries

Author keywords

Cache; Continuous query; Data stream; Optimization

Indexed keywords

CACHE; COMMON OPERATOR; CONTINUOUS QUERIES; CONTINUOUS QUERY; DATA STREAM; DATA STREAM PROCESSING; EVENT DRIVEN; EXPERIMENTAL EVALUATION; INTERMEDIATE RESULTS; OPTIMAL QUERY; QUERY RESULTS; RESEARCH ISSUES; STREAMING DATA; SUB-EXPRESSIONS;

EID: 70349820710     PISSN: 03064379     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.is.2009.04.003     Document Type: Article
Times cited : (5)

References (21)
  • 4
    • 33745289988 scopus 로고    scopus 로고
    • The CQL continuous query language: semantic foundations and query execution
    • Arasu A., Babu S., and Widom J. The CQL continuous query language: semantic foundations and query execution. VLDB Journal 15 2 (2006) 121-142
    • (2006) VLDB Journal , vol.15 , Issue.2 , pp. 121-142
    • Arasu, A.1    Babu, S.2    Widom, J.3
  • 7
    • 0041513203 scopus 로고    scopus 로고
    • PSoup: a system for streaming queries over streaming data
    • Chandrasekaran S., and Franklin M.J. PSoup: a system for streaming queries over streaming data. VLDB Journal 12 2 (2003) 140-156
    • (2003) VLDB Journal , vol.12 , Issue.2 , pp. 140-156
    • Chandrasekaran, S.1    Franklin, M.J.2
  • 8
    • 0040377588 scopus 로고    scopus 로고
    • NiagaraCQ: A scalable continuous query system for Internet databases
    • J. Chen, D.J. DeWitt, F. Tian, Y. Wang, NiagaraCQ: a scalable continuous query system for Internet databases, in: Proceedings of ACM SIGMOD, 2000, pp. 379-390.
    • (2000) Proceedings of ACM SIGMOD , pp. 379-390
    • Chen, J.1    DeWitt, D.J.2    Tian, F.3    Wang, Y.4
  • 9
    • 0036211878 scopus 로고    scopus 로고
    • Design and evaluation of alternative selection placement strategies in optimizing continuous queries
    • J. Chen, D.J. DeWitt, J.F. Naughton, Design and evaluation of alternative selection placement strategies in optimizing continuous queries, in: Proceedings of ICDE, 2002, pp. 345-356.
    • (2002) Proceedings of ICDE , pp. 345-356
    • Chen, J.1    DeWitt, D.J.2    Naughton, J.F.3
  • 10
    • 29844440351 scopus 로고    scopus 로고
    • Predicate result range caching for continuous queries
    • M. Denny, M.J. Franklin, Predicate result range caching for continuous queries, in: Proceedings of ACM SIGMOD, 2005, pp. 646-657.
    • (2005) Proceedings of ACM SIGMOD , pp. 646-657
    • Denny, M.1    Franklin, M.J.2
  • 11
    • 34548724425 scopus 로고    scopus 로고
    • A cooperative, self-configuring high-availability solution for stream processing
    • J. Hwang, Y. Xing, U. Cetintemel, S. Zdonik, A cooperative, self-configuring high-availability solution for stream processing, in: Proceedings of ICDE, 2007, pp. 176-185.
    • (2007) Proceedings of ICDE , pp. 176-185
    • Hwang, J.1    Xing, Y.2    Cetintemel, U.3    Zdonik, S.4
  • 17
    • 0023977778 scopus 로고
    • Multiple-query optimization
    • Sellis T.K. Multiple-query optimization. ACM TODS 13 1 (1988) 23-52
    • (1988) ACM TODS , vol.13 , Issue.1 , pp. 23-52
    • Sellis, T.K.1
  • 18
    • 70349809950 scopus 로고    scopus 로고
    • Trigger grouping: A scalable approach to large scale information monitoring
    • W. Tang, L. Liu, C. Pu, Trigger grouping: a scalable approach to large scale information monitoring, in: Proceedings of IEEE NCA, 2003, pp. 148-155.
    • (2003) Proceedings of IEEE NCA , pp. 148-155
    • Tang, W.1    Liu, L.2    Pu, C.3
  • 20
    • 35048880295 scopus 로고    scopus 로고
    • A multiple continuous query optimization method based on query execution pattern analysis
    • Proceedings of DASFAA, Springer, Berlin
    • Y. Watanabe, H. Kitagawa, A multiple continuous query optimization method based on query execution pattern analysis, in: Proceedings of DASFAA, Lecture Notes in Computer Science, vol. 2973, Springer, Berlin, 2004, pp. 443-456.
    • (2004) Lecture Notes in Computer Science , vol.2973 , pp. 443-456
    • Watanabe, Y.1    Kitagawa, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.