-
1
-
-
33745230127
-
-
MATOBY 0096-4867 10.1016/S1369-7021(06)71572-3
-
R. Zia, Mater. Today MATOBY 0096-4867 9, 20 (2006). 10.1016/S1369- 7021(06)71572-3
-
(2006)
Mater. Today
, vol.9
, pp. 20
-
-
Zia, R.1
-
2
-
-
27144550765
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.095504
-
N. Engheta, A. Salandrino, and A. Alù, Phys. Rev. Lett. 95, 095504 (2005); PRLTAO 0031-9007 10.1103/PhysRevLett.95.095504
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 095504
-
-
Engheta, N.1
Salandrino, A.2
Alù, A.3
-
3
-
-
34648830651
-
-
SCIEAS 0036-8075 10.1126/science.1133268
-
N. Engheta, Science 317, 1698 (2007). SCIEAS 0036-8075 10.1126/science.1133268
-
(2007)
Science
, vol.317
, pp. 1698
-
-
Engheta, N.1
-
4
-
-
42049103727
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.77.144107
-
A. Alù, M.E. Young, and N. Engheta, Phys. Rev. B PRBMDO 1098-0121 77, 144107 (2008). 10.1103/PhysRevB.77.144107
-
(2008)
Phys. Rev. B
, vol.77
, pp. 144107
-
-
Alù, A.1
Young, M.E.2
Engheta, N.3
-
5
-
-
43149123775
-
-
1749-4885 10.1038/nphoton.2008.53
-
A. Alù and N. Engheta, Nat. Photon. 2, 307 (2008). 1749-4885 10.1038/nphoton.2008.53
-
(2008)
Nat. Photon.
, vol.2
, pp. 307
-
-
Alù, A.1
Engheta, N.2
-
6
-
-
41549150772
-
-
JAPIAU 0021-8979 10.1063/1.2891423
-
M.G. Silveirinha, A. Alù, J. Li, and N. Engheta, J. Appl. Phys. 103, 064305 (2008). JAPIAU 0021-8979 10.1063/1.2891423
-
(2008)
J. Appl. Phys.
, vol.103
, pp. 064305
-
-
Silveirinha, M.G.1
Alù, A.2
Li, J.3
Engheta, N.4
-
7
-
-
35348984078
-
-
OPEXFF 1094-4087 10.1364/OE.15.013865
-
A. Alù, A. Salandrino, and N. Engheta, Opt. Express OPEXFF 1094-4087 15, 13865 (2007). 10.1364/OE.15.013865
-
(2007)
Opt. Express
, vol.15
, pp. 13865
-
-
Alù, A.1
Salandrino, A.2
Engheta, N.3
-
8
-
-
0000202685
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.24.3276
-
R.W. Rendell and D.J. Scalapino, Phys. Rev. B PRBMDO 0163-1829 24, 3276 (1981); 10.1103/PhysRevB.24.3276
-
(1981)
Phys. Rev. B
, vol.24
, pp. 3276
-
-
Rendell, R.W.1
Scalapino, D.J.2
-
9
-
-
0001108256
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.39.13224
-
X.C. Zeng, Phys. Rev. B PRBMDO 0163-1829 39, 13224 (1989); 10.1103/PhysRevB.39.13224
-
(1989)
Phys. Rev. B
, vol.39
, pp. 13224
-
-
Zeng, X.C.1
-
10
-
-
0842308922
-
-
NALEFD 1530-6984 10.1021/nl0343710
-
D.A. Genov, Nano Lett. 4, 153 (2004); NALEFD 1530-6984 10.1021/nl0343710
-
(2004)
Nano Lett.
, vol.4
, pp. 153
-
-
Genov, D.A.1
-
13
-
-
0035959763
-
-
ELLEAK 0013-5194 10.1049/el:20010863
-
E. Shamonina, Electron. Lett. 37, 1243 (2001); ELLEAK 0013-5194 10.1049/el:20010863
-
(2001)
Electron. Lett.
, vol.37
, pp. 1243
-
-
Shamonina, E.1
-
14
-
-
1442346499
-
-
JMOPEW 0950-0340
-
S.A. Ramakrishna, J. Mod. Opt. 50, 1419 (2003). JMOPEW 0950-0340
-
(2003)
J. Mod. Opt.
, vol.50
, pp. 1419
-
-
Ramakrishna, S.A.1
-
15
-
-
35348949077
-
-
OPEXFF 1094-4087 10.1364/OE.15.013773
-
A. Alù and N. Engheta, Opt. Express OPEXFF 1094-4087 15, 13773 (2007). 10.1364/OE.15.013773
-
(2007)
Opt. Express
, vol.15
, pp. 13773
-
-
Alù, A.1
Engheta, N.2
-
16
-
-
70349760403
-
-
See EPAPS Document No., E-PRLTAO-103-021941. Figure 1 shows an analogy between the optical magnetic field distribution (snapshots in time) in a nanoscale loop of air groove carved in the nanocircuit board, analogous to Fig. 1, and in the corresponding low-frequency regular rf electronic circuit. For more information on EPAPS, see
-
See EPAPS Document No. E-PRLTAO-103-021941. Figure 1 shows an analogy between the optical magnetic field distribution (snapshots in time) in a nanoscale loop of air groove carved in the nanocircuit board, analogous to Fig. 1, and in the corresponding low-frequency regular rf electronic circuit. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
-
-
-
-
17
-
-
70349770399
-
-
See EPAPS Document No., E-PRLTAO-103-021941. Figure 2 is similar to Fig. 2, but showing how the confinement of displacement current along the carved channel ensures that the relative position of a pair of nanocircuit elements in a series circuit does not affect the circuit response in its entirety. In the plasmonic (gray) nanoparticle, with negative real part of permittivity, the electric field (snapshot in time) is reversed, ensuring continuity of the displacement current and zero voltage drop along the resonant pair, independent of their relative position. For more information on EPAPS, see
-
See EPAPS Document No. E-PRLTAO-103-021941. Figure 2 is similar to Fig. 2, but showing how the confinement of displacement current along the carved channel ensures that the relative position of a pair of nanocircuit elements in a series circuit does not affect the circuit response in its entirety. In the plasmonic (gray) nanoparticle, with negative real part of permittivity, the electric field (snapshot in time) is reversed, ensuring continuity of the displacement current and zero voltage drop along the resonant pair, independent of their relative position. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
-
-
-
-
18
-
-
70349770400
-
-
CST Studio Suite 2008
-
CST Studio Suite 2008, www.cst.com.
-
-
-
|