메뉴 건너뛰기




Volumn , Issue , 2005, Pages 45-52

Nobody is Perfect: ATR’s Hybrid Approach to Spoken Language Translation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS;

EID: 70349754143     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (19)
  • 1
    • 0021567651 scopus 로고
    • A framework of a mechanical translation between japanese and english by analogy principle
    • North Holland: Elsevier
    • M. Nagao, “A framework of a mechanical translation between japanese and english by analogy principle,” in Proc. of the International NATO Symposium on Artificial and Human Intelligence. North Holland: Elsevier, 1984, pp. 173–180.
    • (1984) Proc. of the International NATO Symposium on Artificial and Human Intelligence , pp. 173-180
    • Nagao, M.1
  • 3
    • 25844528067 scopus 로고    scopus 로고
    • Example-based decoding for statistical machine translation
    • New Orleans, USA
    • T. Watanabe and E. Sumita, “Example-based decoding for statistical machine translation,” in Proc. of MT Summit IX, New Orleans, USA, 2003, pp. 410–417.
    • (2003) Proc. of MT Summit IX , pp. 410-417
    • Watanabe, T.1    Sumita, E.2
  • 5
    • 0042357423 scopus 로고    scopus 로고
    • Fast decoding and optimal decoding for machine translation
    • Toulouse, France
    • U. Germann, M. Jahr, K. Knight, D. Marcu, and K. Yamada, “Fast decoding and optimal decoding for machine translation,” in Proc. of ACL, Toulouse, France, 2001.
    • (2001) Proc. of ACL
    • Germann, U.1    Jahr, M.2    Knight, K.3    Marcu, D.4    Yamada, K.5
  • 7
    • 85146415461 scopus 로고    scopus 로고
    • Generation of word graphs in statistical machine translation
    • Philadelphia, USA
    • H. N. Nicola Ueffing, Franz Josef Och, “Generation of word graphs in statistical machine translation,” in Proc. of EMNLP, Philadelphia, USA, 2002, pp. 156–163.
    • (2002) Proc. of EMNLP , pp. 156-163
    • Nicola Ueffing, H. N.1    Och, Franz Josef2
  • 8
    • 85055300444 scopus 로고    scopus 로고
    • Weighted probabilistic sum model based on decision tree decomposition for text chunking
    • Y. Hwang, H. Chung, and H. Rim, “Weighted probabilistic sum model based on decision tree decomposition for text chunking,” IJCPOL, vol. 16(1), pp. 1–20, 2003.
    • (2003) IJCPOL , vol.16 , Issue.1 , pp. 1-20
    • Hwang, Y.1    Chung, H.2    Rim, H.3
  • 9
    • 33847296420 scopus 로고    scopus 로고
    • Practical approach to syntax-based statistical machine translation
    • Phuket, Thailand, (to appear)
    • K. Imamura, H. Okuma, and E. Sumita, “Practical approach to syntax-based statistical machine translation,” in Proc. of Machine Translation Summit X, Phuket, Thailand, 2005, p. (to appear).
    • (2005) Proc. of Machine Translation Summit X
    • Imamura, K.1    Okuma, H.2    Sumita, E.3
  • 10
    • 84881189582 scopus 로고    scopus 로고
    • Example-based machine translation based on syntactic transfer with statistical models
    • Geneva, Switzerland
    • K. Imamura, H. Okuma, T. Watanabe, and E. Sumita, “Example-based machine translation based on syntactic transfer with statistical models,” in Proc. of COLING, Geneva, Switzerland, 2004, pp. 99–105.
    • (2004) Proc. of COLING , pp. 99-105
    • Imamura, K.1    Okuma, H.2    Watanabe, T.3    Sumita, E.4
  • 11
    • 18544376963 scopus 로고    scopus 로고
    • Application of translation knowledge acquired by hierarchical phrase alignment for pattern-based MT
    • Keihanna, Japan
    • K. Imamura, “Application of translation knowledge acquired by hierarchical phrase alignment for pattern-based MT,” in Proc. of TMI, Keihanna, Japan, 2002, pp. 74–84.
    • (2002) Proc. of TMI , pp. 74-84
    • Imamura, K.1
  • 12
    • 85149144166 scopus 로고    scopus 로고
    • Feedback cleaning of machine translation rules using automatic evaluation
    • Sapporo, Japan
    • K. Imamura, E. Sumita, and Y. Matsumoto, “Feedback cleaning of machine translation rules using automatic evaluation,” in Proc. of ACL, Sapporo, Japan, 2003, pp. 447–454.
    • (2003) Proc. of ACL , pp. 447-454
    • Imamura, K.1    Sumita, E.2    Matsumoto, Y.3
  • 13
    • 25844478468 scopus 로고    scopus 로고
    • Example-based machine translation using DP-matching between word sequences
    • Toulouse, France
    • E. Sumita, “Example-based machine translation using DP-matching between word sequences,” in Proc. of ACL, Workshop: Data-Driven Methods in Machine Translation, Toulouse, France, 2001, pp. 1–8.
    • (2001) Proc. of ACL, Workshop: Data-Driven Methods in Machine Translation , pp. 1-8
    • Sumita, E.1
  • 14
    • 85149103791 scopus 로고
    • Experiments and prospects of example-based machine translation
    • E. Sumita and H. Iida, “Experiments and prospects of example-based machine translation,” in Proc. of ACL, 1991, pp. 185–192.
    • (1991) Proc. of ACL , pp. 185-192
    • Sumita, E.1    Iida, H.2
  • 15
    • 33746611240 scopus 로고    scopus 로고
    • Using language and translation models to select the best among outputs from multiple mt systems
    • Taipei, Taiwan
    • Y. Akiba, T. Watanabe, and E. Sumita, “Using language and translation models to select the best among outputs from multiple mt systems,” in Proc. of COLING, Taipei, Taiwan, 2002, pp. 8–14.
    • (2002) Proc. of COLING , pp. 8-14
    • Akiba, Y.1    Watanabe, T.2    Sumita, E.3
  • 16
    • 0004255908 scopus 로고    scopus 로고
    • New York, USA: The McGraw-Hill Companies Inc
    • T. Mitchell, Machine Learning. New York, USA: The McGraw-Hill Companies Inc., 1997.
    • (1997) Machine Learning
    • Mitchell, T.1
  • 18
    • 85009211217 scopus 로고    scopus 로고
    • Creating corpora for speech-to-speech translation
    • Geneve, Switzerland
    • G. Kikui, E. Sumita, T. Takezawa, and S. Yamamoto, “Creating corpora for speech-to-speech translation,” in Proc. of EUROSPEECH03, Geneve, Switzerland, 2003, pp. 381–384.
    • (2003) Proc. of EUROSPEECH03 , pp. 381-384
    • Kikui, G.1    Sumita, E.2    Takezawa, T.3    Yamamoto, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.